1,211 research outputs found

    Basic linear algebra subprograms for FORTRAN usage

    Get PDF
    A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108

    Aerospace applications on integer and combinatorial optimization

    Get PDF
    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables

    Theorem on the Distribution of Short-Time Particle Displacements with Physical Applications

    Full text link
    The distribution of the initial short-time displacements of particles is considered for a class of classical systems under rather general conditions on the dynamics and with Gaussian initial velocity distributions, while the positions could have an arbitrary distribution. This class of systems contains canonical equilibrium of a Hamiltonian system as a special case. We prove that for this class of systems the nth order cumulants of the initial short-time displacements behave as the 2n-th power of time for all n>2, rather than exhibiting an nth power scaling. This has direct applications to the initial short-time behavior of the Van Hove self-correlation function, to its non-equilibrium generalizations the Green's functions for mass transport, and to the non-Gaussian parameters used in supercooled liquids and glasses.Comment: A less ambiguous mathematical notation for cumulants was adopted and several passages were reformulated and clarified. 40 pages, 1 figure. Accepted by J. Stat. Phy

    Polymeric IgA and immune complex concentrations in IgA-related renal disease

    Get PDF
    Polymeric IgA and immune complex concentrations in IgA-related renal disease. Polymeric IgA (PIgA) and immune complex concentrations in IgA-related renal disease were measured in cross sectional and longitudinal studies to establish the relationship between these parameters and both mucosal infection and renal dysfunction. These studies were performed in 50 patients with IgA nephropathy (IgAN), 17 patients with Henoch Schönlein purpura nephritis (HSPN), 11 control patients with IgA negative, diffuse mesangial proliferative glomerulonephritis (DMPGN) and 50 healthy controls. Total PIgA (PIgAT) and PIgA subclass concentrations were measured using a secretory component binding enzyme immunoassay and isotype specific immune complex concentrations were measured using conglutinin (K) binding immunoassays. In cross sectional studies patients with IgAN were found to have increased concentrations of PIgAT, PIgA1, K-IgA1 and K-IgA2 compared to controls. In the longitudinal studies controls and patients had significant increases in PIgAT and PIgA1 concentrations during infection. However, in patients with IgAN, the increases were greater, persisted for longer, and PIgA2 concentrations were also increased. K-IgA1 and K-IgA2 concentrations increased significantly during episodes of infection in IgAN patients in contrast to controls. Patients with HSPN had results similar to those of IgAN patients. No significant correlation was found between PIgA or K-IgA concentrations, and either serum creatinine concentrations or the degree of hematuria. The results indicate that patients with IgA-related renal disease have abnormal regulation of PIgA and immune complexed IgA, and that these abnormalities are exaggerated during mucosal infection

    Human P450 CYP17A1: Control of Substrate Preference by Asparagine 202

    Get PDF
    CYP17A1 is a key steroidogenic enzyme known to conduct several distinct chemical transformations on multiple substrates. In its hydroxylase activity, this enzyme adds a hydroxyl group at the 17α position of both pregnenolone and progesterone at approximately equal rates. However, the subsequent 17,20 carbon–carbon scission reaction displays variable substrate specificity in the numerous CYP17A1 isozymes operating in vertebrates, manifesting as different Kd and kcat values when presented with 17α-hydroxypregnenlone (OHPREG) versus 17α-hydroxyprogesterone (OHPROG). Here we show that the identity of the residue at position 202 in human CYP17A1, thought to form a hydrogen bond with the A-ring alcohol substituent on the pregnene- nucleus, is a key driver of this enzyme’s native preference for OHPREG. Replacement of asparagine 202 with serine completely reverses the preference of CYP17A1, more than doubling the rate of turnover of the OHPROG to androstenedione reaction and substantially decreasing the rate of formation of dehydroepiandrosterone from OHPREG. In a series of resonance Raman experiments, it was observed that, in contrast with the case for the wild-type protein, in the mutant the 17α alcohol of OHPROG tends to form a H-bond with the proximal rather than terminal oxygen of the oxy–ferrous complex. When OHPREG was a substrate, the mutant enzyme was found to have a H-bonding interaction with the proximal oxygen that is substantially weaker than that of the wild type. These results demonstrate that a single-point mutation in the active site pocket of CYP17A1, even when far from the heme, has profound effects on steroidogenic selectivity in androgen biosynthesis

    An Anomalous Near-Bottom Cross-Shelf Intrusion of Slope Water on the Southern New England Continental Shelf

    Get PDF
    Hydrographic surveys and moored observations in Rhode Island Sound (RIS) in water depths of 30–50 m, off the southern New England coast, revealed a near-bottom intrusion of anomalously warm and saline water in late fall 2009. The properties of this water mass, with peak salinity of nearly 35, are typical of slope water that is normally found offshore of the shelfbreak front, located approximately 100 km to the south. The slope water intrusion, with a horizontal spatial scale of about 45 km, appears to have been brought onto the outer shelf during the interaction of a Gulf Stream warm core ring with the shelfbreak east (upshelf) of RIS. The along-shelf transport rate of the intrusion can be explained as due to advection by the mean outer-shelf along-isobath current, although the transit time of the intrusion is also consistent with the self-advection of a dense bolus on a sloping shelf. The mechanism responsible for the large onshore movement of the intrusion from the outer shelf is not entirely clear, although a wind-driven upwelling circulation appeared to be responsible for its final movement into the RIS region. Depth-averaged salinity at all RIS mooring sites increased by 0.5–1 over the 3–4 week intrusion period suggesting that the intrusion mixed irreversibly, at least partially, with the ambient shelf water. The mixing of the salty intrusion over the shelf indicates that net cross-isobath fluxes of salt and other water properties have occurred

    A new layout optimization technique for interferometric arrays, applied to the MWA

    Get PDF
    Antenna layout is an important design consideration for radio interferometers because it determines the quality of the snapshot point spread function (PSF, or array beam). This is particularly true for experiments targeting the 21 cm Epoch of Reionization signal as the quality of the foreground subtraction depends directly on the spatial dynamic range and thus the smoothness of the baseline distribution. Nearly all sites have constraints on where antennas can be placed---even at the remote Australian location of the MWA (Murchison Widefield Array) there are rock outcrops, flood zones, heritages areas, emergency runways and trees. These exclusion areas can introduce spatial structure into the baseline distribution that enhance the PSF sidelobes and reduce the angular dynamic range. In this paper we present a new method of constrained antenna placement that reduces the spatial structure in the baseline distribution. This method not only outperforms random placement algorithms that avoid exclusion zones, but surprisingly outperforms random placement algorithms without constraints to provide what we believe are the smoothest constrained baseline distributions developed to date. We use our new algorithm to determine antenna placements for the originally planned MWA, and present the antenna locations, baseline distribution, and snapshot PSF for this array choice.Comment: 12 pages, 6 figures, 1 table. Accepted for publication in MNRA

    Synchrotron radiation from a charge moving along a helical orbit inside a dielectric cylinder

    Full text link
    The radiation emitted by a charged particle moving along a helical orbit inside a dielectric cylinder immersed into a homogeneous medium is investigated. Expressions are derived for the electromagnetic potentials, electric and magnetic fields, and for the spectral-angular distribution of radiation in the exterior medium. It is shown that under the Cherenkov condition for dielectric permittivity of the cylinder and the velocity of the particle image on the cylinder surface, strong narrow peaks are present in the angular distribution for the number of radiated quanta. At these peaks the radiated energy exceeds the corresponding quantity for a homogeneous medium by some orders of magnitude. The results of numerical calculations for the angular distribution of radiated quanta are presented and they are compared with the corresponding quantities for radiation in a homogeneous medium. The special case of relativistic charged particle motion along the direction of the cylinder axis with non-relativistic transverse velocity (helical undulator) is considered in detail. Various regimes for the undulator parameter are discussed. It is shown that the presence of the cylinder can increase essentially the radiation intensity.Comment: 18 pages, 8 EPS figure
    corecore