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RESEARCH ARTICLE
10.1002/2013JC009259

An anomalous near-bottom cross-shelf intrusion of slope water
on the southern New England continental shelf
D. S. Ullman1, D. L. Codiga1, A. Pfeiffer-Herbert1, and C. R. Kincaid1

1Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA

Abstract Hydrographic surveys and moored observations in Rhode Island Sound (RIS) in water depths of
30–50 m, off the southern New England coast, revealed a near-bottom intrusion of anomalously warm and
saline water in late fall 2009. The properties of this water mass, with peak salinity of nearly 35, are typical of
slope water that is normally found offshore of the shelfbreak front, located approximately 100 km to the
south. The slope water intrusion, with a horizontal spatial scale of about 45 km, appears to have been
brought onto the outer shelf during the interaction of a Gulf Stream warm core ring with the shelfbreak
east (upshelf) of RIS. The along-shelf transport rate of the intrusion can be explained as due to advection by
the mean outer-shelf along-isobath current, although the transit time of the intrusion is also consistent with
the self-advection of a dense bolus on a sloping shelf. The mechanism responsible for the large onshore
movement of the intrusion from the outer shelf is not entirely clear, although a wind-driven upwelling circu-
lation appeared to be responsible for its final movement into the RIS region. Depth-averaged salinity at all
RIS mooring sites increased by 0.5–1 over the 3–4 week intrusion period suggesting that the intrusion
mixed irreversibly, at least partially, with the ambient shelf water. The mixing of the salty intrusion over the
shelf indicates that net cross-isobath fluxes of salt and other water properties have occurred.

1. Introduction

The shelfbreak front in the Mid-Atlantic Bight (MAB) separates cooler, less saline shelf water from warmer,
more saline slope water and is a typical feature on buoyancy-influenced continental shelves worldwide.
Although the MAB shelfbreak front is a water mass boundary, the increase in MAB shelf water salinity as it
moves equatorward through the Bight [Wright and Parker, 1976] and salt balance calculations indicate that
significant exchange across the front occurs [Wright, 1976]. This cross-frontal exchange is suggested by
observations of parcels or streamers of shelf water offshore of the front [Wright, 1976; Churchill et al., 1986;
Garfield and Evans, 1987] and by observations of slope water parcels or filaments inshore of the shelfbreak.
The mixing and transport of waters across the shelfbreak front has important implications for salt, nutrient,
and carbon budgets on the continental shelf [e.g., Biscaye et al., 1994] as well as for the recruitment of juve-
nile fish into coastal waters [e.g., Hare and Cowen, 1996]. Slope water is enriched in nitrate relative to the
shelf, and mass balance calculations by Nixon et al. [1996] suggest that shelf-slope exchange across the
shelfbreak front serves as a significant source of nitrate to the Mid-Atlantic Bight shelf ecosystem.

Incursions of slope water onto the MAB shelf have been observed in a variety of forms: as surface-intensified
features [Gawarkiewicz et al., 1996; Churchill et al., 2003], as intrusions in the summertime pycnocline [Boicourt
and Hacker, 1976; Gordon and Aikman, 1981; Churchill, 1985; Lentz, 2003; Hopkins et al., 2012], and as near-
bottom intrusions [Boicourt and Hacker, 1976; Houghton et al., 1988; Lentz et al., 2003; Churchill et al., 2003]. The
surface-intensified intrusions and the pycnocline intrusions, so-called S-max intrusions, tend to occur during
the summer period of high stratification, while the near-bottom intrusions have generally been observed dur-
ing fall-spring when the shelf is weakly stratified. In all of the above documented cases of near-bottom slope
water intrusions in the MAB, the onshore displacement of the slope water was in the range of 10–30 km.

There is an increasing body of evidence suggesting the important influence of Gulf Stream warm core rings
on exchange across the shelfbreak front. The interaction of a ring with the front has been shown to increase
the susceptibility of the front to instabilities [Ramp et al., 1983; Sloan, 1996; Morgan, 1997]. Modeling studies
indicate the formation of a warm equatorward current of ring water along the continental slope when a
ring impacts the shelfbreak [Oey and Zhang, 2004; Wei and Wang, 2009]. This process has been observed by
Wei et al. [2008] who used repeat ship-borne current observations to show the presence of a strong (2.5 Sv)
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onshore flow of ring water on the southwest side of a ring hitting the shelfbreak in the MAB. The data sug-
gested that some portion of the onshore flow of ring water penetrated onto the shelf itself.

The onshore movement of slope water due to the movement of the shelfbreak front, whatever the cause,
will result in net cross-isobath exchange only to the extent that slope water parcels mix with their surround-
ings before they are advected back to their original location. The inferred net onshore exchanges of salt
and nitrate, referred to above, suggest that such cross-isobath exchange must happen in some manner.
However, in the previous studies of near-bottom slope water intrusions over the outer shelf cited above, it
was not clear that such irreversible mixing occurred.

In this paper, we present evidence for the presence of a wintertime, near-bottom intrusion of slope water as
far inshore as the 40 m isobath south of New England, nearly 100 km inshore of the shelfbreak, that
appeared to mix with ambient shelf water. We first examine local CTD survey data and moored observations
of hydrography and currents to describe the properties of the intrusion and its progression into RIS. Shelf-
wide CTD data from a NOAA survey and concurrent satellite sea-surface temperature (SST) imagery from
the region are then used to suggest that the interaction of a Gulf Stream warm-core ring with the shelfbreak
front resulted in the cross-frontal transport of a large slope water mass. We then discuss the question of
how this slope water mass on the outer shelf could have been transported to the inner shelf of RIS.

2. Observations and Methods

The initial observations of the intrusion were obtained as part of a background investigation of the physical
oceanography of Rhode Island Sound (RIS) [Ullman and Codiga, 2010]. A series of four hydrographic surveys
of RIS and adjacent waters, using a hand-lowered CTD (SeaBird Electronics SBE 19plus), was performed at
roughly 3 month intervals over a full year [Ullman and Codiga, 2010]. The survey grid, with stations sepa-
rated by approximately 9 km was designed to cover the Rhode Island Ocean Special Area Management
Plan (RI OSAMP) region, an area defined for the purpose of managing competing marine resource usages,
including wind energy development. Here we discuss only the survey carried out on 7 and 8 December
2009. Although the CTD was equipped with additional sensors, we focus here only on the temperature and
salinity measurements. Computation of salinity (Practical Salinity Scale) from measured temperature, pres-
sure, and conductivity followed the standard SeaBird processing methodology, and the data were bin aver-
aged into 1 dbar bins. Further details of the hydrographic surveys can be found in Ullman and Codiga
[2010].

As part of the same RI OSAMP project, moored time series observations of currents were obtained at four
sites (ShE, ShW, C1, and C3) in the RIS region during the fall-early winter of 2009 (shown in Figure 1). Addi-
tional current measurements were made at sites C2 and C4 as part of a separate project investigating
exchange between RIS and the shelf to the southeast. The measurements at C1, C2, C3, and C4 were made
using bottom-mounted acoustic Doppler current profilers (ADCP), which also provided bottom tempera-
ture, while those at ShW and ShE were made using a combination of a near-surface (2 m depth) current
meter and a downward-facing ADCP. Temperature and salinity measurements were also obtained at sites
C1, C3, ShW, and ShE using recording CTD instruments at various depths below a surface buoy. The moor-
ings at C1 and C3 included seven instruments distributed from approximately 1 m below the surface to 8–9
m above the bottom. The ShW and ShE moorings were instrumented with CTDs at three depths, ranging
from 1 m below the surface to 6–8 m above the bottom and also provided wind measurements from sen-
sors mounted on the surface buoys. Details of the instrumentation and preliminary processing of the ADCP
and CTD data obtained at the ShE, ShW, C1, and C3 moorings can be found in Ullman and Codiga [2010]
(note that in this data report, stations ShE, ShW, C1, and C3 are named MD-F, MD-S, PO-S, and PO-F, respec-
tively). Low-pass filtering of current and hydrographic time series was performed using a fourth-order But-
terworth filter with a cutoff period of 36 h.

The CTD mooring strings at C1 and C3 were placed within 200 m of the ADCP bottom mounts. The string at
C1 was damaged and dragged, presumably by a fishing trawler, approximately 1 km to the southwest over
the course of about 2 h on 25 November 2009 (several days prior to the arrival of the deep intrusion).
Although several instruments were destroyed by this impact, the instruments at depths of 28 and 35 m
were unharmed and the instrument originally at a nominal depth of 7 m was moved on the wire to a depth
of 3 m. All of these CTDs continued to provide good data until late December.

Journal of Geophysical Research: Oceans 10.1002/2013JC009259

ULLMAN ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 1740



Archived hydrocast data for the New England shelf region, covering the time period 1916–2009, were
extracted from NOAA’s World Ocean Database (WOD) 2009 [Boyer et al., 2009]. For the region of interest
(72–70�W, 39–41.5�N), there were a total of 855 casts during the months November–January, including 98
casts within 25 km of mooring site C1. We also obtained, from NOAA’s Northeast Fisheries Science Center
(NFSC), CTD data from a survey cruise on the MAB shelf during early November 2009.

All available SST imagery covering the southern New England shelf and slope were obtained from the Mid-
Atlantic Regional Association Coastal Ocean Observing System (http://maracoos.org) for the period Novem-
ber–December 2009. To reduce the impact of clouds, all images from each day were combined into
composite images using the warmest-pixel method [Legeckis and Zhu, 1997].

3. Results

3.1. Description of Intrusion
The CTD survey in December 2009 showed the presence of a near-bottom layer that was anomalously
warm and saline, with temperatures above 15�C and salinities above 34 (Figure 2). Average autumn
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Figure 1. Southern New England shelf portion of the Middle Atlantic Bight. The inset map shows the location of the moorings in Rhode Island
Sound. In the inset map, circles denote moorings that were instrumented with wind sensors, CTDs, and downward-facing ADCPs; diamonds
indicate moorings instrumented with CTDs and bottom-mounted ADCPs; and triangles denote moorings with only bottom-mounted ADCPs.
The star indicates the location of CTD survey cast D43 in December 2009. Geographic locations are italicized, with ‘‘BI’’ referring to Block Island.
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near-bottom conditions in
southern RIS, where the intru-
sion was observed, are temper-
atures from 12.5 to 13.0�C and
salinities from 32.5 to 33.0
[Codiga and Ullman, 2010]. The
intrusion extended northward
(onshore) into RIS via the deep
channel between Block Island
and Cox Ledge (Figure 2).
Although some stations along
the southern boundary of the
survey grid were not occupied
due to operational constraints,
it seems clear that the anomaly
was an intrusion from offshore
and was most intense directly
south of Block Island. At its
thickest point, along the south-
ern edge of the survey grid, the
intrusion (defined as water
with salinity >33) extended to
approximately 20 m above the
bottom [Ullman and Codiga,
2010].

The warm, high salinity intru-
sion was detected by the deep
CTD sensors at C1 (water depth
44 m), where an abrupt
increase of salinity and temper-
ature by approximately 2 salin-
ity units and 4�C over roughly
6 h was observed at 35 m
depth on 28 November 2009
(Figure 3). Subsequently, the 35
m salinity slowly increased to a
maximum of �34.5 before

decreasing again to <33. This was followed by another salinity increase to a maximum of 35 before decreas-
ing abruptly in late December to approximately 33. From start to finish, the anomalous water was present
at the mooring location for 3–4 weeks. The intrusion extended upward at times to at least 28 m depth
(approximately 16 m above the bottom) with significant high frequency (tidal) variability evident in the 28
and 35 m T and S (Figure 3). Near-surface salinity at C1, while exhibiting much less variability than at depth,
decreased by about 0.5 at the time of arrival of the deep intrusion and Figure 3 suggests that, during the
intrusion period in general, near-surface salinity varied inversely with deep salinity.

At mooring C1, the abrupt increases in salinity and temperature at 35 m observed on 28 November and
then again on 11 December (denoted by the upward arrows in Figure 3) after an intervening relaxation
were accompanied by very strong, surface-intensified eastward currents with magnitudes of �0.5 m/s (Fig-
ure 3). Velocity vectors rotated counterclockwise (onshore) with depth. Maximum onshore currents
occurred at about 10 m above the bottom, with magnitudes in the range of 0.3–0.4 m/s. The deep onshore
and eastward current pulses were coincident with the occurrence of strong (�15 m/s) eastward, upwelling
favorable, winds (Figure 3). In contrast, the abrupt salinity and temperature drops at depth at C1, occurring
on 9 and 20 December (denoted by the downward arrows in Figure 3), were accompanied by surface-
intensified westward and weak offshore near-bottom currents associated with westward (downwelling
favorable) winds. The sense of near-surface (7 m) salinity responses to these upwelling-favorable and
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downwelling-favorable wind fluctuations was, as mentioned above, opposite the near-bottom fluctuations.
As this mooring is located southeast of the Long Island Sound outflow plume [Ullman and Codiga, 2004],
this behavior is consistent with wind-driven advection of the plume past the mooring, with upwelling
(downwelling) winds tending to move the plume offshore (onshore).

Although the effects on water density of the temperature and salinity changes associated with the intrusion
are opposing, plotting the 35 m mooring observations from C1 on a T/S diagram (Figure 4) shows that the
density of the intrusion is higher than the ambient water (preintrusion conditions of T 5 12�C and S 5 32)
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by 1–1.5 kg/m3. This suggests
that the intrusion is not of the S-
max type [Lentz, 2003; Hopkins
et al., 2012] which tend to move
along isopycnals and which are
observed at midwater column
depths.

3.2. Comparison With Archived
Observations
We examined archived hydro-
graphic cast data to determine
the degree to which the observed
intrusion was anomalous. Figure
4 shows the T/S characteristics of
all archived hydrocasts taken
within 25 km of the C1 mooring
location along with the data from
the deep sensor on the mooring
and those from the nearest CTD
cast (4.6 km away), denoted D43
in Figure 1, from the December
2009 survey. Salinities from the
archived casts are almost always
<33.5, with only three data val-
ues from a single cast, in Decem-
ber 1979, >34. The observed
maximum salinity of 35 at the
mooring is thus roughly 1 salinity
unit higher than had ever been
observed in the archived data,

indicating that the fall 2009 event was a rather uncommon occurrence.

Further analysis of the archived hydrocast data from the portion of the MAB shelf offshore of the C1 moor-
ing shows that water with salinity of 35 (the maximum observed salinity at mooring C1) is exceedingly rare
inside the 70 m isobath. Figure 5 shows the percentage of hydrocasts where S> 35 water was encountered,
binned as a function of water depth (20 m bins). At water depths of 50–70 m, the percentage is <1% and
the percentage only rises to slightly >9% for the 70–90 m depth bin. The percentage rises rapidly around
the 100 m isobath, roughly the location of the foot of the shelfbreak front in this region. This indicates that
the salinity of the intrusion water is consistent with the hypothesis that the intrusion originated in the shelf-
break front or the slope water offshore of the shelfbreak.

3.3. Spatial and Temporal Variability of Intrusion
The intrusion was also detected at the other moorings as well as at C1. Figure 6 shows low-pass filtered
salinity at the four moorings where water column hydrography measurements were made during the late
November–December time period. Note that although CTD measurements at seven depths are available at
C3, for clarity in Figure 6 we show only three depths corresponding to the depths available at C1. Although
the highest salinity jump occurred at C1, where deep salinity increased by 2–3, deep salinity at all other sites
also exhibited a similar abrupt increase of >1 slightly after the increase at C1. Although the initial jump in
salinity at depth is unambiguous at all sites, the temporal fluctuations in salinity that occur after the arrival
of the intrusion differ from site to site. At the deep sites, C1 and C3, the 35 m salinity exhibits an approxi-
mately 2 week periodicity that appears to be related to fluctuations in the wind-driven shelf currents as
seen in Figure 3. This long-period variability is also present at the shallower ShW and ShE sites but at those
locations, fluctuations at shorter periods (2–5 days) appear to be more dominant. At ShE, after an initial
period during which the intrusion is bottom intensified with significant vertical salinity stratification, surface
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to bottom salinity differences are
reduced to less than about 0.25
after 3 December. This occurs to a
lesser extent at ShW and C3.

Bottom temperature observations
from the four bottom-mounted
ADCPs (sites C1–C4) show the
advance of the deep intrusion
along an approximate straight
line extending from the shelf into
RIS through the deep channel
north and west of Cox Ledge (see
Figure 1 for the geographic loca-
tions). Figure 7a shows that the
initial temperature jump associ-
ated with the arrival of the deep
intrusion occurs first at C1, fol-
lowed sequentially by jumps at
sites C2, C3, and C4. Tempera-
tures at C4 and C3 decrease start-
ing around 8 December, followed
approximately 2 days later by
temperature decreases at C2 and
C1, suggesting a large-scale off-
shore retreat of the intrusion. This

is followed by subsequent temperature increases, occurring in the same sequence as the initial jumps.
The final temperature drop at all sites occurs in the same order as the first retreat although with sub-
stantially shorter time lags on approximately 20 December. Near-bottom subtidal currents during the
initial and secondary intrusion advances (Figures 7b and 7c) are strongly eastward at all sites with mag-
nitude of 0.15–0.25 m/s with slightly stronger northward currents observed at C1 and C2 but with nearly
zero north-south current at the two interior sites (C3 and C4). Near-bottom currents are thus oriented
roughly in the proper sense to advect intrusion water from C1 on the shelf into RIS via the deep
channel.

The times of arrival of the initial intrusion pulse at sites C1–C4 were visually estimated from the bottom-
temperature records and are shown in Figure 8a as a function of distance from site C1. The intrusion gradu-
ally slows as it proceeds northeast (Figure 8b), reaching site C4 approximately 2 days after passing C1. The
propagation speed of the intrusion estimated from the time of arrival of the temperature jump slows from
approximately 35 km/d between C1 and C2 to about 10 km/d between C3 and C4 (Figure 8b). These speeds
are significantly faster than the speeds estimated from the measured ADCP velocities, assuming that the
movement of the anomaly is due purely to advection along the line joining two sites. To estimate the
advection speed, we used the ADCP velocity at 10 m above the bottom, resolved into the component in
the direction of the line joining two adjacent sites. These velocities were averaged over the time between
the arrival of the temperature pulse at each site and then averaged over the two adjacent sites. The esti-
mates range from approximately 5 to 24 km/d, although they exhibit a similar decrease with distance as do
the estimates from the temperature anomalies (Figure 8b). If velocities at 20 m above the bottom are used
(Figure 8b), the differences between the two methods are reduced, but the ADCP velocities still underesti-
mate the propagation speeds. The underestimate of the propagation speed using the velocity along the
line joining the mooring sites suggests that the intrusion is not being advected exactly along the line. Any
perpendicular advection would tend to increase the apparent propagation speed estimated from the arrival
times.

We also show, in Figure 8b, the intrusion speed assuming that the intrusion propagates as a gravity current
over a flat bottom (depths at all sites are approximately the same). The propagation speed was computed
using the formulae in Shin et al. [2004] with a 20 m deep current in 40 m water depth and a 1 kg/m3 density
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difference. The computed gravity current speed is roughly the correct magnitude, but the gravity current
model does not explain the slowing of the intrusion as it propagates to the northeast.

Progressive vector diagrams for 4 day periods prior to the time of arrival of the intrusion at the four
bottom-mounted ADCP sites were constructed using hourly averaged velocities from 10 m above the bot-
tom and a trapezoidal integration scheme (Figure 9). These pseudotrajectories, which must be viewed with
caution given the underlying assumption of spatial uniformity in currents, suggest that the anomalous
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water reached C1 from roughly the southwest. The trajectory at C2 during the final day is more from the
south. The C3 and C4 trajectories suggest advection from the west. The pseudotrajectories reinforce the
above suggestion that the advection of the anomaly is not directly along the path defined by the four sta-
tions. The suggestion from Figure 9 is that the anomaly approaches C2 from a more offshore direction and
then swings to the east to impact C3 and C4.

3.4. Evidence for Mixing of Intrusion
The presence of slope water on the shelf far inshore of the shelfbreak prompts investigation of the question
of mixing between the intrusion water and the ambient shelf water. As noted above, Figure 6 shows that in
early December 2009, vertical salinity stratification weakens significantly at sites ShE, ShW, and C3. Vertical
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salinity sections along the
approximately north-south lines
depicted in Figure 2b from the
CTD survey of 7–8 December
2009 show a region where isoha-
lines from the upper level of the
intrusion bow upward (Figure
10). This is most pronounced in
the center portion of lines NS5
and NS6 but also over Cox Ledge
at stations d37 and d47 of line
NS7. The upward bowing of iso-
halines in these areas is sugges-
tive of irreversible vertical mixing
between the salty intrusion
water and the fresher ambient
water above.

The time series of moored salin-
ity in Figure 6 indicate that
depth-averaged salinity at all
four sites increased by 0.5–1.0
over the approximate 3 week
period during which the intru-
sion water was present (from 27
November just prior to the arrival
of the intrusion at C1 to 21
December). This increase is too

large to be a manifestation of the seasonal increase in salinity occurring in winter in this region, which has
been shown by Ullman and Codiga [2004] and Codiga and Ullman [2010] to be more on the order of 0.25.
The observed increase in ambient salinity, above that expected from the seasonal cycle, in the RIS region is
thus consistent with partial mixing of the high salinity intrusion with RIS waters.

4. Discussion

A lower bound on the spatial scale of the anomalous water mass can be estimated from the bottom tem-
perature observations. Figure 7 shows that during the first intrusion period (late November–mid-December),
there were instances in which temperatures in excess of 14�C, an approximately 2�C rise from preintrusion
conditions, were observed simultaneously at all sites. The distance between sites C1 and C4 of 46 km thus
represents a rough lower bound on the size of the feature.

We now address the question of the origin of the anomalous water mass. Previous hydrographic studies in
the MAB have generally defined shelf water to be water with salinity <34 [Mountain, 1991; Manning, 1991;
Mountain, 2003]. Shelf water is bounded on its offshore side by the shelfbreak front, which separates lower
salinity shelf water from higher salinity water over the continental slope. The location of the shelfbreak front
was defined by Linder and Gawarkiewicz [1998] as the 34.5 isohaline, which generally slopes upward in the
offshelf direction. Thus, water with salinity of 35 must have originated on the offshore side of the shelfbreak
front. In the shelfbreak front climatology of Linder and Gawarkiewicz [1998], for the region of the MAB from
69 to 72�W during late-autumn to early winter, the front intersects the bottom at approximately the 90 m
isobath, roughly 85 km south of mooring C1.

The hydrography of the outer shelf south of New England was surveyed during early November 2009 as
part of a NFSC cruise on the MAB shelf. Maps of near-bottom temperature and salinity from this cruise are
shown in Figure 11 (the height above bottom for the near-bottom measurements ranged from 1 to 10 m).
Although the warmest and saltiest water in the outer shelf CTD casts typically occurred near the bottom, in
several instances highest temperature and salinity occurred above the bottom. In order to more definitively
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show the presence of intrusion
water, the station symbols in
Figure 11 are color coded to
indicate the presence (black) or
absence (white), at any depth in
the CTD cast, of water with the
approximate properties of the
observed slope-water intrusion
at C1 (T� 15 and S� 34.5).
Slope water was observed on
the shelf (water depths <100 m)
at several stations east of 69�W
between the 60 and 80 m iso-
baths on 10 and 11 November,
at two stations at a longitude of
approximately 69.75�W in water
depths of 78 and 88 m on 4
November, and at one station in
92 m water depth at longitude
of 70.7�W also on 4 November
(Figure 11).

To explain the presence of slope
water on the shelf, we examined

sea-surface temperature (SST) imagery of the shelfbreak region during November 2009. These data indi-
cate the presence, in early to mid-November, of a Gulf Stream meander or warm core ring pressed up
against the shelfbreak with its western edge at a longitude of about 68�W (Figure 12), or just east of the
location of highest near-bottom T and S shown in Figure 11. A well-defined tongue of warm water
extended westward from the meander along the continental slope and is suggestive of the warm stream-
ers observed to the west of warm core rings by Wei et al. [2008]. The results of Wei et al. [2008] suggested
significant onshelf flux of ring/slope water associated with the tongue. Model studies indicate the forma-
tion of a subsurface equatorward jet as well as cyclonic eddies within this tongue region with near-
surface leakage onto the shelf [Oey and Zhang, 2004]. Although these studies suggest the possibility of
direct ring-induced onshelf transport of slope/ring water, other studies show that the effect of rings can
be more indirect. The surface front to the west of the ring in Figure 12 was located inshore of the 100 m
isobath compared to its location well offshore of the 100 m isobath to the east of the ring interaction
region suggesting that the ring has forced the shelfbreak front onshore. Interaction of rings with the front
has been shown to increase the instability of the front [Ramp et al., 1983; Sloan, 1996; Morgan, 1997] and
there are suggestions in the literature that the resulting frontal eddies can enhance cross-frontal
exchange [Churchill et al., 1986; Sloan, 1996]. SST imagery from approximately 1 week later (not shown)
shows evidence of intense frontal eddy activity, with spatial scales of roughly 50 km, along the front to
the west of the ring. It thus seems quite likely that the near-bottom slope water observed on the outer
shelf in the NOAA survey arrived there via either direct ring-induced onshelf transport or ring-enhanced
shelfbreak eddy processes.

The progressive vector diagram in Figure 9 suggests that during the 4 days prior to its arrival, the leading
edge of the intrusion approached C1 from the southwest. Since all the shelf CTD stations where slope water
was observed during the November NOAA survey are located to the east and offshore of this inferred
source area, the question that arises is what process brought the slope water to the vicinity of the 40 m iso-
bath southwest of C1. The mean, near-bottom velocity components at C1 over the period from 4 to 28
November (0.004 m/s westward and 0.009 m/s northward) were far too low to transport a water parcel from
the above-mentioned shelf CTD casts around 69.75�W near the 80 m isobath to C1. However, previous stud-
ies have shown that the mean along-shelf flow increases offshore over the southern New England shelf,
with seasonal mean along-isobath currents during fall-winter at the 70 m isobath during the Coastal Mixing
and Optics experiment in the range of 0.05–0.10 m/s westward [Shearman and Lentz, 2003]. Currents in this
range would be sufficient to advect water westward from the 4 November CTD location (69.75�W at roughly
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the 80 m isobath) to a location due south of C1 on the 80 m isobath in 18–36 days, suggesting that along-
isobath advection is a plausible explanation for the arrival of slope water southwest of C1 in late November.
However, the cross-isobath movement of the intrusion cannot be explained either by observed cross-
isobath currents at C1 during the period prior to the arrival of the intrusion, referred to above, or by the
results of Shearman and Lentz [2003] who observed mean offshore currents on the outer shelf.

Although the actual size of the dense slope water mass observed in RIS is uncertain, the distance from its
shelfbreak source suggests that it was likely an isolated water mass and not simply an onshore intrusion of
the shelfbreak front. The behavior of isolated eddies on sloping shelves is thus relevant to the present dis-
cussion. Prior studies have examined the dynamics of lenses of dense water on sloping shelves and have
shown the tendency for along-isobath propagation similar to the westward propagation of near-surface
baroclinic eddies on a b-plane [e.g., Nof, 1983; Mory et al., 1987; Whitehead et al., 1990]. In the northern
hemisphere, these eddies travel with shallower water on the right, which in the southern New England shelf
case is westward. The theoretical propagation speed of a near-bottom lens with an infinitely deep and
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motionless upper layer is
C5

g0S
f [Nof, 1983], where

g0 is the reduced gravity,
S is the bottom slope,
and f is the Coriolis
parameter. Using a den-
sity difference of 1 kg/m3

between the intrusion
water and ambient shelf
water and a bottom slope
of 1023 gives a propaga-
tion speed of approxi-
mately 0.1 m/s, which is
of the correct magnitude
to explain the timing of
the intrusion arrival at C1.
It should be noted, how-
ever, that in laboratory
experiments, the eddies
are sometimes observed
to propagate at a speed
roughly equal to the the-
oretical value C [White-
head et al., 1990], while in
other cases much slower
propagation is observed
[Mory et al., 1987]. This is
likely due to differences
in the methods used to

generate the eddies. An important finding of Mory et al. [1987] is that the dense bottom eddies were
observed to propagate into shallower water in addition to their along-isobath movement. The inferred
onshore movement of the intrusion we observed, which cannot be easily explained, could possibly be due
to such an effect.

The ecological significance of a near-bottom intrusion of slope water is likely dependent on the degree to
which it mixes with the ambient shelf water. Slope water below the seasonal pycnocline is known to con-

tain high concentrations
of dissolved inorganic
nutrients [e.g., Hales et al.,
2009], but if an intrusion
of this water merely
advances onshore and
then retreats no net
nutrient flux occurs. If,
however, the intrusion
mixes with the shelf
water then an irreversible
nutrient (and salt) flux
has occurred. While we
have no direct measure-
ments of mixing in the
RIS region, examination
of the moored salinity
time series in Figure 6
suggests that the 2009
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intrusion did mix with the ambient shelf water. At all moorings, the salinity in late December is roughly
0.5–1 higher at all depths than the late-November salinity, prior to the onset of the intrusion. The intrusion
period in 2009, as is generally typical of late fall to early winter conditions, was characterized by strong
wind stress events and the associated velocity shears that could have driven the mixing of the intrusion
waters. In fact, Figure 10 suggests the occurrence of at least localized mixing of the intrusion in RIS.

Although the analysis of the archived hydrocast data is definitive in suggesting that the fall 2009 slope
water intrusion into the RIS region was a truly rare event, it is possible that the infrequent sampling of his-
torical surveys might miss such a transient event. To determine whether a similar event occurred the follow-
ing year, we examined moored CTD records from the late fall-winter of 2010–2011 at site C2 (Figure 1). The
observations (not shown) did not show evidence of a similar intrusion during that winter. It is interesting to
note, however, that Gawarkiewicz et al. [2012] present evidence of anomalously high bottom temperatures
at water depths of 80–90 m south of New England during late fall 2011, which they attributed to the influ-
ence of the Gulf Stream, whose path at that time was much closer to the shelfbreak than normal. Unfortu-
nately, no measurements in RIS are available from the 2011–2012 winter to ascertain whether the intrusion
noted by Gawarkiewicz et al. [2012] penetrated as far inshore as the 2009 event.

5. Conclusions

The near-bottom intrusion observed in the RIS region during late autumn 2009 had salinity that was roughly
1 salinity unit higher than had ever been observed in the historical record in that region. The T/S properties
of the intrusion clearly indicate that the water originated on the offshore side of the shelfbreak front. The
spatial scale of the intrusion was estimated to be at least 45 km and it was present in the mooring region
for 3–4 weeks, after which it appeared to retreat. The moored current observations indicate that an upwell-
ing circulation due to strong eastward winds was responsible for the onshore movement of the intrusion
from the southwest only during the final few days prior to its appearance in RIS. During the month preced-
ing the intrusion, slope water with properties similar to the RIS intrusion was observed over the outer shelf
southeast of RIS, likely due to the influence of a warm core ring interacting with the shelfbreak front. The
available data do not allow a definitive identification of the process responsible for the transport of this
water mass westward and onshore to the region southwest of RIS. From historical observations, the mean
along-isobath current in that region is sufficient to advect the anomaly to RIS in the time required. However,
it was also shown that the inferred speed was also consistent with the theoretical propagation speed of a
dense bolus on the shelf. Although the fate of the autumn 2009 slope water intrusion is not known, the fact
that it was observed nearly 100 km from the shelfbreak and that the moored salinity records indicated an
increase in salinity over the intrusion time period suggests the likelihood that the intrusion did mix partially
with ambient shelf water before it could retreat off the shelf. Such a process may represent a significant
mechanism for the transport of salt and biogeochemical constituents across the shelf in the MAB.
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