4,300 research outputs found

    The Mass Dependence of Stellar Rotation in the Orion Nebula Cluster

    Get PDF
    We have determined new rotation periods for 404 stars in the Orion Nebula Cluster using the Wide Field Imager attached to the MPG/ESO 2.2 m telescope on La Silla, Chile. Mass estimates are available for 335 of these and most have M < 0.3 M_sun. We confirm the existence of a bimodal period distribution for the higher mass stars in our sample and show that the median rotation rate decreases with increasing mass for stars in the range 0.1 < M <0.4 M_sun. While the spread in angular momentum (J) at any given mass is more than a factor of 10, the majority of lower mass stars in the ONC rotate at rates approaching 30% of their critical break-up velocity, as opposed to 5-10% for solar-like stars. This is a consequence of both a small increase in observed specific angular momentum (j=J/M) and a larger decrease in the critical value of j with decreasing mass. Perhaps the most striking fact, however, is that j varies by so little - less than a factor of two - over the interval 0.1-1.0 M_sun. The distribution of rotation rates with mass in the ONC (age ~ 1 My) is similar in nature to what is found in the Pleiades (age ~ 100 My). These observations provide a significant new guide and test for models of stellar angular momentum evolution during the proto-stellar and pre-main sequence phases.Comment: 11 pages, 3 figure

    ALFA & 3D: integral field spectroscopy with adaptive optics

    Full text link
    One of the most important techniques for astrophysics with adaptive optics is the ability to do spectroscopy at diffraction limited scales. The extreme difficulty of positioning a faint target accurately on a very narrow slit can be avoided by using an integral field unit, which provides the added benefit of full spatial coverage. During 1998, working with ALFA and the 3D integral field spectrometer, we demonstrated the validity of this technique by extracting and distinguishing spectra from binary stars separated by only 0.26". The combination of ALFA & 3D is also ideally suited to imaging distant galaxies or the nuclei of nearby ones, as its field of view can be changed between 1.2"x1.2" and 4"x4", depending on the pixel scale chosen. In this contribution we present new results both on galactic targets, namely young stellar objects, as well as extra-galactic objects including a Seyfert and a starburst nucleus.Comment: SPIE meeting 4007 on Adaptive Optical Systems Technology, March 200

    Consistently Simulating a Wide Range of Atmospheric Scenarios for K2-18b with a Flexible Radiative Transfer Module

    Full text link
    The atmospheres of small, potentially rocky exoplanets are expected to cover a diverse range in composition and mass. Studying such objects therefore requires flexible and wide-ranging modeling capabilities. We present in this work the essential development steps that lead to our flexible radiative transfer module, REDFOX, and validate REDFOX for the Solar system planets Earth, Venus and Mars, as well as for steam atmospheres. REDFOX is a k-distribution model using the correlated-k approach with random overlap method for the calculation of opacities used in the δ\delta-two-stream approximation for radiative transfer. Opacity contributions from Rayleigh scattering, UV / visible cross sections and continua can be added selectively. With the improved capabilities of our new model, we calculate various atmospheric scenarios for K2-18b, a super-Earth / sub-Neptune with \sim8 M_\oplus orbiting in the temperate zone around an M-star, with recently observed H2_2O spectral features in the infrared. We model Earth-like, Venus-like, as well as H2_2-He primary atmospheres of different Solar metallicity and show resulting climates and spectral characteristics, compared to observed data. Our results suggest that K2-18b has an H2_2-He atmosphere with limited amounts of H2_2O and CH4_4. Results do not support the possibility of K2-18b having a water reservoir directly exposed to the atmosphere, which would reduce atmospheric scale heights, hence too the amplitudes of spectral features inconsistent with the observations. We also performed tests for H2_2-He atmospheres up to 50 times Solar metallicity, all compatible with the observations.Comment: 28 pages, 13 figures, accepted for publication in Ap

    Global phylogeography and evolution of chelonid fibropapilloma-associated herpesvirus

    Get PDF
    A global phylogeny for chelonid fibropapilloma-associated herpesvirus (CFPHV), the most likely aetiological agent of fibropapillomatosis (FP) in sea turtles, was inferred, using dated sequences, through Bayesian Markov chain Monte Carlo analysis and used to estimate the virus evolutionary rate independent of the evolution of the host, and to resolve the phylogenetic positions of new haplotypes from Puerto Rico and the Gulf of Guinea. Four phylogeographical groups were identified: eastern Pacific, western Atlantic/eastern Caribbean, mid-west Pacific and Atlantic. The latter comprises the Gulf of Guinea and Puerto Rico, suggesting recent virus gene flow between these two regions. One virus haplotype from Florida remained elusive, representing either an independent lineage sharing a common ancestor with all other identified virus variants or an Atlantic representative of the lineage giving rise to the eastern Pacific group. The virus evolutionary rate ranged from 1.62x10(-4) to 2.22x10(-4) substitutions per site per year, which is much faster than what is expected for a herpesvirus. The mean time for the most recent common ancestor of the modern virus variants was estimated at 192.90-429.71 years ago, which, although more recent than previous estimates, still supports an interpretation that the global FP pandemic is not the result of a recent acquisition of a virulence mutation(s). The phylogeographical pattern obtained seems partially to reflect sea turtle movements, whereas altered environments appear to be implicated in current FP outbreaks and in the modern evolutionary history of CFPHV.DNER-PR; US NMFS (NMFS-NOAA) [NA08NMF4720436]; US-Fish and Wildlife Service (USFWS); Sociedad Chelonia; WIDECAST; US Environmental Protection Agency (US-EPA); Lisbon Oceanarium, Portugal; Interdisciplinary Research Center for Animal Health of the Faculty of Veterinary Medicine of the Technical University of Lisbon (FMV/TUL)info:eu-repo/semantics/publishedVersio

    Herschel observations of EXtra-Ordinary Sources: Analysis of the HIFI 1.2 THz Wide Spectral Survey Toward Orion KL II. Chemical Implications

    Get PDF
    We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a novel technique to identify those molecules emitting in the hottest gas. In particular, we find the complex nitrogen bearing species CH3_{3}CN, C2_{2}H3_{3}CN, C2_{2}H5_{5}CN, and NH2_{2}CHO systematically trace hotter gas than the oxygen bearing organics CH3_{3}OH, C2_{2}H5_{5}OH, CH3_{3}OCH3_{3}, and CH3_{3}OCHO, which do not contain nitrogen. If these complex species form predominantly on grain surfaces, this may indicate N-bearing organics are more difficult to remove from grain surfaces than O-bearing species. Another possibility is that hot (Tkin_{\rm kin}\sim300 K) gas phase chemistry naturally produces higher complex cyanide abundances while suppressing the formation of O-bearing complex organics. We compare our derived rotation temperatures and molecular abundances to chemical models, which include gas-phase and grain surface pathways. Abundances for a majority of the detected complex organics can be reproduced over timescales \gtrsim 105^{5} years, with several species being under predicted by less than 3σ\sigma. Derived rotation temperatures for most organics, furthermore, agree reasonably well with the predicted temperatures at peak abundance. We also find that sulfur bearing molecules which also contain oxygen (i.e. SO, SO2_{2}, and OCS) tend to probe the hottest gas toward Orion KL indicating the formation pathways for these species are most efficient at high temperatures.Comment: 31 pages, 6 figures, 1 Table, accepted to the Astrophysical Journa

    RACE-OC Project: Rotation and variability in the open cluster M11 (NGC6705)

    Full text link
    Rotation and magnetic activity are intimately linked in main-sequence stars of G or later spectral types. The presence and level of magnetic activity depend on stellar rotation, and rotation itself is strongly influenced by strength and topology of the magnetic fields. Open clusters represent especially useful targets to investigate the rotation/activity/age connection. The open cluster M11 has been studied as a part of the RACE-OC project (Rotation and ACtivity Evolution in Open Clusters), which is aimed at exploring the evolution of rotation and magnetic activity in the late-type members of open clusters with different ages. Photometric observations of the open cluster M11 were carried out in June 2004 using LOAO 1m telescope. The rotation periods of the cluster members are determined by Fourier analysis of photometric data time series. We further investigated the relations between the surface activity, characterized by the light curve amplitude, and rotation. We have discovered a total of 75 periodic variables in the M11 FoV, of which 38 are candidate cluster members. Specifically, among cluster members we discovered 6 early-type, 2 eclipsing binaries and 30 bona-fide single periodic late-type variables. Considering the rotation periods of 16 G-type members of the almost coeval 200-Myr M34 cluster, we could determine the rotation period distribution from a more numerous sample of 46 single G stars at an age of about 200-230 Myr and determine a median rotation period P=4.8d. A comparison with the younger M35 cluster (~150 Myr) and with the older M37 cluster (~550 Myr) shows that G stars rotate slower than younger M35 stars and faster than older M37 stars. The measured variation of the median rotation period is consistent with the scenario of rotational braking of main-sequence spotted stars as they age.Comment: Accepted by Astronomy and Astrophysics on Dec 15, 200

    Ultra-low threshold CW Triply Resonant OPO in the near infrared using Periodically Poled Lithium Niobate

    Get PDF
    We have operated a CW triply resonant OPO using a PPLN crystal pumped by a Nd:YAG laser at 1.06 micron and generating signal and idler modes in the 2-2.3 micron range. The OPO was operated stably in single mode operation over large periods of time with a pump threshold as low as 500 microwatts.Comment: 7 pages, 5 figures, submitted to JEOS

    Development of Readout Interconnections for the Si-W Calorimeter of SiD

    Full text link
    The SiD collaboration is developing a Si-W sampling electromagnetic calorimeter, with anticipated application for the International Linear Collider. Assembling the modules for such a detector will involve special bonding technologies for the interconnections, especially for attaching a silicon detector wafer to a flex cable readout bus. We review the interconnect technologies involved, including oxidation removal processes, pad surface preparation, solder ball selection and placement, and bond quality assurance. Our results show that solder ball bonding is a promising technique for the Si-W ECAL, and unresolved issues are being addressed.Comment: 8 pages + title, 6 figure
    corecore