3,214 research outputs found

    Plume mapping and isotopic characterisation of anthropogenic methane sources

    Get PDF
    Methane stable isotope analysis, coupled with mole fraction measurement, has been used to link isotopic signature to methane emissions from landfill sites, coal mines and gas leaks in the United Kingdom. A mobile Picarro G2301 CRDS (Cavity Ring-Down Spectroscopy) analyser was installed on a vehicle, together with an anemometer and GPS receiver, to measure atmospheric methane mole fractions and their relative location while driving at speeds up to 80 kph. In targeted areas, when the methane plume was intercepted, air samples were collected in Tedlar bags, for delta C-13-CH4 isotopic analysis by CF-GC-IRMS (Continuous Flow Gas Chromatography-Isotope Ratio Mass Spectrometry). This method provides high precision isotopic values, determining delta C-13-CH4 to +/- 0.05 per mil. The bulk signature of the methane plume into the atmosphere from the whole source area was obtained by Keeling plot analysis, and a delta C-13 -CH4 signature, with the relative uncertainty, allocated to each methane source investigated. Both landfill and natural gas emissions in SE England have tightly constrained isotopic signatures. The averaged delta C-13-CH4 for landfill sites is -58 +/- 3%o. The delta C-13-CH4 signature for gas leaks is also fairly constant around -36 +/- 2 parts per thousand, a value characteristic of homogenised North Sea supply. In contrast, signatures for coal mines in N. England and Wales fall in a range of -51.2 +/- 0.3 parts per thousand to 30.9 +/- 1.4 parts per thousand, but can be tightly constrained by region. The study demonstrates that CRDS-based mobile methane measurement coupled with off-line high precision isotopic analysis of plume samples is an efficient way of characterising methane sources. It shows that iiotopic measurements allow type identification, and possible location of previously unknown methane sources. In modelling studies this measurement provides an independent constraint to determine the contributions of different sources to the regional methane budget and in the verification of inventory source distribution. (C) 2015 Elsevier Ltd. All rights reserved

    Phase-Dependent Properties of Extrasolar Planet Atmospheres

    Full text link
    Recently the Spitzer Space Telescope observed the transiting extrasolar planets, TrES-1 and HD209458b. These observations have provided the first estimates of the day side thermal flux from two extrasolar planets orbiting Sun-like stars. In this paper, synthetic spectra from atmospheric models are compared to these observations. The day-night temperature difference is explored and phase-dependent flux densities are predicted for both planets. For HD209458b and TrES-1, models with significant day-to-night energy redistribution are required to reproduce the observations. However, the observational error bars are large and a range of models remains viable.Comment: 8 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Multiwavelength Observations of Swift J1753.5-0127

    Get PDF
    We present contemporaneous X-ray, ultraviolet, optical and near-infrared observations of the black hole binary system, Swift J1753.5-0127, acquired in 2012 October. The UV observations, obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope, are the first UV spectra of this system. The dereddened UV spectrum is characterized by a smooth, blue continuum and broad emission lines of CIV and HeII. The system was stable in the UV to <10% during our observations. We estimated the interstellar reddening by fitting the 2175 A absorption feature and fit the interstellar absorption profile of Lyα\alpha to directly measure the neutral hydrogen column density along the line of sight. By comparing the UV continuum flux to steady-state thin accretion disk models, we determined upper limits on the distance to the system as a function of black hole mass. The continuum is well fit with disk models dominated by viscous heating rather than irradiation. The broadband spectral energy distribution shows the system has declined at all wavelengths since previous broadband observations in 2005 and 2007. If we assume that the UV emission is dominated by the accretion disk the inner radius of the disk must be truncated at radii above the ISCO to be consistent with the X-ray flux, requiring significant mass loss from outflows and/or energy loss via advection into the black hole to maintain energy balance.Comment: To appear in the Ap

    Suppressed Far-UV stellar activity and low planetary mass-loss in the WASP-18 system

    Get PDF
    WASP-18 hosts a massive, very close-in Jupiter-like planet. Despite its young age (R′HK activity parameter lies slightly below the basal level; there is no significant time-variability in the log R′HK value; there is no detection of the star in the X-rays. We present results of far-UV observations of WASP-18 obtained with COS on board of HST aimed at explaining this anomaly. From the star’s spectral energy distribution, we infer the extinction (E(B − V) ≈ 0.01mag) and then the ISM column density for a number of ions, concluding that ISM absorption is not the origin of the anomaly. We measure the flux of the four stellar emission features detected in the COS spectrum (C II, C III, C IV, Si IV). Comparing the C II/C IV flux ratio measured for WASP-18 with that derived from spectra of nearby stars with known age, we see that the far-UV spectrum of WASP-18 resembles that of old (>5Gyr), inactive stars, in stark contrast with its young age. We conclude that WASP-18 has an intrinsically low activity level, possibly caused by star-planet tidal interaction, as suggested by previous studies. Re-scaling the solar irradiance reference spectrum to match the flux of the Si IV line, yields an XUV integrated flux at the planet orbit of 10.2 erg s−1 cm−2. We employ the rescaled XUV solar fluxes to model of the planetary upper atmosphere, deriving an extremely low thermal mass-loss rate of 10−20MJ Gyr−1. For such high-mass planets, thermal escape is not energy limited, but driven by Jeans escape

    An Effective Temperature Scale for Late M and L Dwarfs, from Resonance Absorption Lines of CsI and RbI

    Full text link
    We present Keck HIRES spectra of 6 late-M dwarfs and 11 L dwarfs. Our goal is to assign effective temperatures to the objects using detailed atmospheric models and fine analysis of the alkali resonance absorption lines of CsI and RbI. These yield mutually consistent results (+-150 K) when we use ``cleared-dust'' models, which account for the removal of refractory species from the molecular states but do not include dust opacities. We find a tendency for the RbI line to imply a slightly higher temperature, which we ascribe to an incomplete treatment of the overlying molecular opacities. The final effective temperatures we adopt are based on the CsI fits alone, though the RbI fits support the CsI temperature sequence. This work, in combination with results from the infrared, hints that dust in these atmospheres has settled out of the high atmosphere but is present in the deep photosphere. We also derive radial and rotational velocities for all the objects, finding that the previously discovered trend of rapid rotation for very low mass objects is quite pervasive. To improve on our analysis, there is a clear need for better molecular line lists and a more detailed understanding of dust formation and dynamics.Comment: 53 pages, including 20 figures and 2 Tables; accepted in Ap

    An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS

    Full text link
    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm^3. Ionization electrons drift towards a double parallel grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche induced photons from N2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and 12C particles from the dissociation of 16O and of three alpha-particles from the dissociation of 12C have been measured during initial in-beam test experiments performed at the HIgS facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.Comment: Supported by the Richard F. Goodman Yale-Weizmann Exchange Program, ACWIS, NY, and USDOE grant Numbers: DE-FG02-94ER40870 and DE-FG02-97ER4103
    • …
    corecore