3,583 research outputs found

    Milking Sane Safe Sanitary

    Get PDF
    PDF pages: 1

    Probing the causes of thermal hysteresis using tunable N-agg micelles with linear and brush-like thermoresponsive coronas

    Get PDF
    Self-assembled thermoresponsive polymers in aqueous solution have great potential as smart, switchable materials for use in biomedical applications. In recent years, attention has turned to the reversibility of these polymers’ thermal transitions, which has led to debate over what factors influence discrepancies in the transition temperature when heating the system compared to the temperature obtained when cooling the system, known as the thermal hysteresis. Herein, we synthesize micelles with tunable aggregation numbers (Nagg) whose cores contain poly(n-butyl acrylate-co-N,N-dimethylacrylamide) (p(nBA-co-DMA)) and four different thermoresponsive corona blocks, namely poly(N-isopropylacrylamide) (pNIPAM), poly(N,N-diethylacrylamide) (pDEAm), poly(diethylene glycol monomethyl ether methacrylate) (pDEGMA) and poly(oligo(ethylene glycol) monomethyl ether methacrylate) (pOEGMA). By studying their thermoresponsive behavior, we elucidate the effects of changing numerous important characteristics both in the thermoresponsive chain chemistry and architecture, and in the structure of their self-assemblies. Our findings demonstrate large deviations in the reversibility between the self-assemblies and the corresponding thermoresponsive homopolymers; specifically we find that micelles whose corona consist of polymers with a brush-like architecture (pDEGMA and pOEGMA) exhibit irreversible phase transitions at a critical chain density. These results lead to a deeper understanding of stimuli-responsive self-assemblies and demonstrate the potential of tunable Nagg micelles for uncovering structure–property relationships in responsive polymer systems

    A Connection between Star Formation in Nuclear Rings and their Host Galaxies

    Full text link
    We present results from a photometric H-alpha survey of 22 nuclear rings, aiming to provide insight into their star formation properties, including age distribution, dynamical timescales, star formation rates, and galactic bar influence. We find a clear relationship between the position angles and ellipticities of the rings and those of their host galaxies, which indicates the rings are in the same plane as the disk and circular. We use population synthesis models to estimate ages of each H-alpha emitting HII region, which range from 1 Myr to 10 Myrs throughout the rings. We find that approximately half of the rings contain azimuthal age gradients that encompass at least 25% of the ring, although there is no apparent relationship between the presence or absence of age gradients and the morphology of the rings or their host galaxies. NGC1343, NGC1530, and NGC4321 show clear bipolar age gradients, where the youngest HII regions are located near the two contact points of the bar and ring. We speculate in these cases that the gradients are related to an increased mass inflow rate and/or an overall higher gas density in the ring, which would allow for massive star formation to occur on short timescales, after which the galactic rotation would transport the HII regions around the ring as they age. Two-thirds of the barred galaxies show correlation between the locations of the youngest HII region(s) in the ring and the location of the contact points, which is consistent with predictions from numerical modeling.Comment: 23 pages, 10 figures (7 color), 23 tables, accepted for publication in ApJS (Feb 08); NASA-GSFC, IAC, University of Maryland, STSc

    Simple, sensitive and species-specific assays for detecting quagga and zebra mussels (Dreissena rostriformis bugensis and D. polymorpha) using environmental DNA

    Get PDF
    Early detection is paramount for attempts to remove invasive non-native species (INNS). Traditional methods rely on physical sampling and morphological identification, which can be problematic when species are in low densities and/or are cryptic. The use of environmental DNA (eDNA) as a monitoring tool in freshwater systems is becoming increasingly acceptable and widely used for the detection of single species. Here we demonstrate the development and application of standard PCR primers for the detection of two freshwater invasive species which are high priority for monitoring in the UK and elsewhere: the Dreissenid mussels; Dreissena rostriformis bugensis (Andrusov, 1987) and D. polymorpha (Pallas, 1771). We carried out a rigorous validation process for testing the new primers, including DNA detection and degradation experiments in mesocosms, and a field comparison with traditional monitoring protocols. eDNA from single individuals of both mussel species could be detected within four hours of the start of the mesocosm experiment. In field trials, the two mussel species were detected at all sites where the species are known to be present, and eDNA consistently outperformed traditional kick-net sampling for species detection. These results demonstrate the applicability of standard PCR for eDNA detection of freshwater invasive species

    Turbulence driven by outflow-blown cavities in the molecular cloud of NGC 1333

    Full text link
    Outflows from young stellar objects have been identified as a possible source of turbulence in molecular clouds. To investigate the relationship between outflows, cloud dynamics and turbulence, we compare the kinematics of the molecular gas associated with NGC 1333, traced in 13CO(1-0), with the distribution of young stellar objects (YSOs) within. We find a velocity dispersion of ~ 1-1.6 km/s in 13CO that does not significantly vary across the cloud, and is uncorrelated with the number of nearby young stellar outflows identified from optical and submillimeter observations. However, from velocity channel maps we identify about 20 cavities or depressions in the 13CO intensity of scales > 0.1-0.2 pc and velocity widths 1-3 km/s. The cavities exhibit limb brightened rims in both individual velocity channel maps and position velocity diagrams, suggesting that they are slowly expanding. We interpret these cavities to be remnants of past YSO outflow activity: If these cavities are presently empty, they would fill in on time scales of a million years. This can exceed the lifetime of a YSO outflow phase, or the transit time of the central star through the cavity, explaining the the absence of any clear correlation between the cavities and YSO outflows. We find that the momentum and energy deposition associated with the expansion of the cavities is sufficient to power the turbulence in the cloud. In this way we conclude that the cavities are an important intermediary step between the conversion of YSO outflow energy and momentum into cloud turbulent motions.Comment: Accepted for publication in ApJ. Check out http://astro.pas.rochester.edu/~aquillen/coolpics.html for channel map and PosVel movies of N133

    Very Small Strangelets

    Full text link
    We study the stability of small strangelets by employing a simple model of strange matter as a gas of non-interacting fermions confined in a bag. We solve the Dirac equation and populate the energy levels of the bag one quark at a time. Our results show that for system parameters such that strange matter is unbound in bulk, there may still exist strangelets with A<100A<100 that are stable and/or metastable. The lifetime of these strangelets may be too small to detect in current accelerator experiments, however.Comment: 13 pages, MIT CTP#217

    A Compact X-ray Source and Possible X-ray Jets within the Planetary Nebula Menzel 3

    Get PDF
    We report the discovery, by the Chandra X-ray Observatory, of X-ray emission from the bipolar planetary nebula Menzel 3. In Chandra CCD imaging, Mz 3 displays hot (3-6x10^6 K) gas within its twin, coaxial bubbles of optical nebulosity, as well as a compact X-ray source at the position of its central star(s). The brightest diffuse X-ray emission lies along the polar axis of the optical nebula, suggesting a jet-like configuration. The observed combination of an X-ray-emitting point source and possible X-ray jet(s) is consistent with models in which accretion disks and, potentially, magnetic fields shape bipolar planetary nebulae via the generation of fast, collimated outflows.Comment: 12 pages, 3 figures; to appear in Astrophysical Journal (Letters

    Geographies of the COVID-19 pandemic

    Get PDF
    The spread of the novel coronavirus (SARS-CoV-2) has resulted in the most devastating global public health crisis in over a century. At present, over 10 million people from around the world have contracted the Coronavirus Disease 2019 (COVID-19), leading to more than 500,000 deaths globally. The global health crisis unleashed by the COVID-19 pandemic has been compounded by political, economic, and social crises that have exacerbated existing inequalities and disproportionately affected the most vulnerable segments of society. The global pandemic has had profoundly geographical consequences, and as the current crisis continues to unfold, there is a pressing need for geographers and other scholars to critically examine its fallout. This introductory article provides an overview of the current special issue on the geographies of the COVID-19 pandemic, which includes 42 commentaries written by contributors from across the globe. Collectively, the contributions in this special issue highlight the diverse theoretical perspectives, methodological approaches, and thematic foci that geographical scholarship can offer to better understand the uneven geographies of the Coronavirus/COVID-19. </jats:p
    • …
    corecore