5,385 research outputs found

    Double Exchange in a Magnetically Frustrated System

    Full text link
    This work examines the magnetic order and spin dynamics of a double-exchange model with competing ferromagnetic and antiferromagnetic Heisenberg interactions between the local moments. The Heisenberg interactions are periodically arranged in a Villain configuration in two dimensions with nearest-neighbor, ferromagnetic coupling JJ and antiferromagnetic coupling −ηJ-\eta J. This model is solved at zero temperature by performing a 1/S1/\sqrt{S} expansion in the rotated reference frame of each local moment. When η\eta exceeds a critical value, the ground state is a magnetically frustrated, canted antiferromagnet. With increasing hopping energy tt or magnetic field BB, the local moments become aligned and the ferromagnetic phase is stabilized above critical values of tt or BB. In the canted phase, a charge-density wave forms because the electrons prefer to sit on lines of sites that are coupled ferromagnetically. Due to a change in the topology of the Fermi surface from closed to open, phase separation occurs in a narrow range of parameters in the canted phase. In zero field, the long-wavelength spin waves are isotropic in the region of phase separation. Whereas the average spin-wave stiffness in the canted phase increases with tt or η\eta , it exhibits a more complicated dependence on field. This work strongly suggests that the jump in the spin-wave stiffness observed in Pr1−x_{1-x}Cax_xMnO3_3 with 0.3≀x≀0.40.3 \le x \le 0.4 at a field of 3 T is caused by the delocalization of the electrons rather than by the alignment of the antiferromagnetic regions.Comment: 28 pages, 12 figure

    Dielectrophoresis-Driven Spreading of Immersed Liquid Droplets

    Get PDF
    In recent years electrowetting-on-dielectric (EWOD) has become an effective tool to control partial wetting. EWOD uses the liquid−solid interface as part of a capacitive structure that allows capacitive and interfacial energies to adjust by changes in wetting when the liquid−solid interface is charged due to an applied voltage. An important aspect of EWOD has been its applications in micro fluidics in chemistry and biology and in optical devices and displays in physics and engineering. Many of these rely on the use of a liquid droplet immersed in a second liquid due to the need either for neutral buoyancy to overcome gravity and shield against impact shocks or to encapsulate the droplet for other reasons, such as in microfluidic-based DNA analyses. Recently, it has been shown that nonwetting oleophobic surfaces can be forcibly wetted by nonconducting oils using nonuniform electric fields and an interface-localized form of liquid dielectrophoresis (dielectrowetting). Here we show that this effect can be used to create films of oil immersed in a second immiscible fluid of lower permittivity. We predict that the square of the thickness of the film should obey a simple law dependent on the square of the applied voltage and with strength dependent on the ratio of difference in permittivity to the liquid-fluid interfacial tension, ΔΔ/ÎłLF. This relationship is experimentally confirmed for 11 liquid−air and liquid−liquid combinations with ΔΔ/ÎłLF having a span of more than two orders of magnitude. We therefore provide fundamental understanding of dielectrowetting for liquid-in-liquid systems and also open up a new method to determine liquid−liquid interfacial tensions

    Sparsest factor analysis for clustering variables: a matrix decomposition approach

    Get PDF
    We propose a new procedure for sparse factor analysis (FA) such that each variable loads only one common factor. Thus, the loading matrix has a single nonzero element in each row and zeros elsewhere. Such a loading matrix is the sparsest possible for certain number of variables and common factors. For this reason, the proposed method is named sparsest FA (SSFA). It may also be called FA-based variable clustering, since the variables loading the same common factor can be classified into a cluster. In SSFA, all model parts of FA (common factors, their correlations, loadings, unique factors, and unique variances) are treated as fixed unknown parameter matrices and their least squares function is minimized through specific data matrix decomposition. A useful feature of the algorithm is that the matrix of common factor scores is re-parameterized using QR decomposition in order to efficiently estimate factor correlations. A simulation study shows that the proposed procedure can exactly identify the true sparsest models. Real data examples demonstrate the usefulness of the variable clustering performed by SSFA

    Community‐Engaged Neighborhood Revitalization and Empowerment: Busy Streets Theory in Action

    Full text link
    Busy streets theory predicts that engaging residents in physical revitalization of neighborhoods will facilitate community empowerment through the development of sense of community, social cohesion, collective efficacy, social capital, and behavioral action. Establishing safe environments fosters positive street activity, which reinforces neighborhood social relationships. A community‐engaged approach to crime prevention through environmental design (CE‐CPTED) is one promising approach to creating busy streets because it engages residents in collaborative interactions to promote safer environments. Yet, few researchers have studied how CE‐CPTED may be associated with busy streets. We interviewed 18 residents and stakeholders implementing CE‐CPTED in Flint, Michigan. We studied three neighborhoods with different levels of resident control over CE‐CPTED. Participants described how CE‐CPTED implementation affected their neighborhood. Participants from all three neighborhoods reported that CE‐CPTED was associated with positive street activity, sense of community, and collective efficacy. Participants from neighborhoods with higher resident control of CE‐CPTED reported more social capital and behavioral action than those from neighborhoods with less resident control. Our findings support busy streets theory: Community engagement in neighborhood improvement enhanced community empowerment. CE‐CPTED that combines physical revitalization with resident engagement and control creates a potent synergy for promoting safe and healthy neighborhoods.HighlightsBusy streets theory supported in qualitative study of neighborhoods in a rust belt city.Community engaged neighborhood improvement enhances psychological empowerment.Resident control of neighborhood revitalization results in most empowered outcomes of busy streets.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154635/1/ajcp12358_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154635/2/ajcp12358.pd

    The Caltech Millimeter Wave Interferometer

    Get PDF
    The Caltech Millimeter-Wave Interferometer has recently begun observations at a wavelength of 2.6 mm. We describe the instrument and some of the first results from it

    The first GCT camera for the Cherenkov Telescope Array

    Full text link
    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\deg} angular size, resulting in a field of view of ~9{\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Defining Rules for Kinematic Shapes with Variable Spatial Relations

    Get PDF
    Designing mechanisms can be a challenging problem, because the underlying kinematics involved are typically not intuitively incorporated into common techniques for design representation. Kinematic shapes and kinematic grammars build on the shape grammar and making grammar formalisms to enable a visually intuitive approach to model and explore mechanisms. With reference to the lower kinematic pairs this paper introduces kinematic shapes. These are connected shapes with parts which have variable spatial relations that account for the relative motion of the parts. The paper considers how such shapes can be defined, the role of elements shared by connected parts, and the motions that result. It also considers how kinematic shape rules can be employed to generate and explore the motion of mechanisms

    Z decays into light gluinos: a calculation based on unitarity

    Full text link
    The Z boson can decay to a pair of light gluinos through loop-mediated processes. Based on unitarity of the S-matrix, the imaginary part of the decay amplitude is computed in the presence of a light bottom squark. This imaginary part can provide useful information on the full amplitude. Implications are discussed for a recently proposed light gluino and light bottom squark scenario.Comment: 19 pages, LaTeX, 3 figures, submitted to Phys. Rev.

    Shadowing, Binding and Off-Shell Effects in Nuclear Deep Inelastic Scattering

    Full text link
    We present a unified description of nuclear deep inelastic scattering (DIS) over the whole region 0<x<10<x<1 of the Bjorken variable. Our approach is based on a relativistically covariant formalism which uses analytical properties of quark correlators. In the laboratory frame it naturally incorporates two mechanisms of DIS: (I) scattering from quarks and antiquarks in the target and (II) production of quark-antiquark pairs followed by interactions with the target. We first calculate structure functions of the free nucleon and develop a model for the quark spectral functions. We show that mechanism (II) is responsible for the sea quark content of the nucleon while mechanism (I) governs the valence part of the nucleon structure functions. We find that the coherent interaction of qˉq\bar qq pairs with nucleons in the nucleus leads to shadowing at small xx and discuss this effect in detail. In the large xx region DIS takes place mainly on a single nucleon. There we focus on the derivation of the convolution model. We point out that the off-shell properties of the bound nucleon structure function give rise to sizable nuclear effects.Comment: 29 pages (and 10 figures available as hard copies from Authors), REVTE
    • 

    corecore