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Abstract. Designing mechanisms can be a challenging problem, because the 

underlying kinematics involved are typically not intuitively incorporated into 

common techniques for design representation. Kinematic shapes and kinematic 

grammars build on the shape grammar and making grammar formalisms to 

enable a visually intuitive approach to model and explore mechanisms. With 

reference to the lower kinematic pairs this paper introduces kinematic shapes. 

These are connected shapes with parts which have variable spatial relations that 

account for the relative motion of the parts. The paper considers how such 

shapes can be defined, the role of elements shared by connected parts, and the 

motions that result. It also considers how kinematic shape rules can be 

employed to generate and explore the motion of mechanisms.  

Keywords: Shape grammars, kinematic design, making grammars, boundaries. 

1 Introduction  

In shape grammars, abstract shapes model the pictorial representations used during 

design activities [1]. The shape grammar formalism is well suited to visual 

explorations of these representations, and the computational mechanism of shape 

rules has been applied to describe and support creative design processes [2]. This is 

because the shapes used in shape grammars are visually dynamic, supporting 

reinterpretation and recognition of emergent forms. In recent years, shape grammars 

have been extended to making grammars [3], where the aim is to formalise physical 

manipulations of material and objects, and to represent processes of making that take 

place in arts, crafts, and manufacturing. Consideration of things made from stuff, 

introduces new constraints to ensure that shapes mimic the behaviour of physical 

objects in physical space, for example to take account of collisions [4]. This paper is 

concerned with a subclass of physical objects, mechanisms with moving parts [5], and 
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explores the constraints that arise when shapes are used to represent and explore 

mechanisms, in kinematic grammars.  

A variety of well-proven methods exist for designing mechanisms, e.g. [6], but the 

underlying kinematics involved are typically not intuitively incorporated into 

common techniques for design representation. In some instances, linked static 

representations (such as series of images) may communicate the combined effects of 

the possible motions of parts within a design. Alternatively, physical or virtual models 

can be used to test motion – either through simulation or material interaction. But in 

general, exploration depends on a designer’s ability to apply understanding of 

potential motions between parts to independently predict and model (mentally or 

otherwise) the combined effects within a designed object. 

Building on shape grammars, kinematic grammars aim to provide a formalism 

which will enable a visually intuitive approach to model and explore mechanisms [5]. 

In abstract terms, the motion of mechanisms can be modelled according to connected 

objects that move relative to each other. Consequently, kinematic grammars 

incorporate shapes with explicit but connected parts that have variable spatial 

relations between them. In this paper, kinematic grammars are introduced with 

reference to a specific class of mechanisms, the lower kinematic pairs. The paper 

proceeds in the next section by introducing the lower kinematic pairs; Section 3 

considers the concept of kinematic shapes as models of physical mechanisms; Section 

4 explores how mechanisms can be explored using kinematic grammars; and, Section 

5 discusses kinematic grammars with reference to lower kinematic pairs. 

2 Mechanisms in Motion 

At its most basic, the design of a mechanism can be described according to 

combinations of the relative motions of connected parts [8]. The pairs of parts that 

give rise to motions are often referred to as kinematic pairs, and are subject to certain 

spatial conditions. Firstly, one of the parts needs to be fixed with respect to the local 

spatial neighbourhood. Which of the two parts is fixed is of no consequence because 

the motion is relative, and temporally the part only needs to be fixed for the duration 

of the motion. Secondly, the geometry of the two parts needs to restrict the relative 

motion in some way. The result of this is that the fixed part determines an envelope of 

motion for the moving part. In order to ensure motion, the shared geometry of the 

connected parts must have the same curvature. This means that the shared geometry 

of parts must either be a point, or it must have constant curvature, i.e. it is either 

rectilinear, circular, or a helical combination. 

Kinematic pairs are classified in various ways: according to types of connection, 

i.e. surface, line or point; according to the type of relative motion, e.g. sliding or 

rolling; or according to the type of constraint applied to the pair, e.g. mechanical or 

due to gravity. Here, the focus is on a particular classification of kinematic pairs, 

referred to as lower pairs. These are identified according to a surface connection, and 

are differentiated from higher pairs, where connection is a point or a line, e.g. the 

connection between a cam and its follower. In total, there are six lower pairs, as 



illustrated in Fig. 1. The lower pairs enumerate spatial restrictions on motion, 

resulting in pairs of parts with relative motions of varying degrees of freedom (DoF): 

- Prismatic pair (slider), e.g. Fig. 1i: the axes of the two parts are aligned, 

allowing translation along the axes and no rotation. This results in one DoF 

- Revolute pair (hinged joint), e.g. Fig. 1ii: the axes of the two parts are aligned, 

allowing rotation about the axes and no translation. This results in one DoF 

- Screw pair, e.g. Fig. 1iii: the axes of the two parts are aligned, allowing a 

combination of translation and rotation relative to the axes. This results in one 

DoF 

- Cylindrical pair, e.g. Fig. 1iv: the axes of the two parts are aligned, allowing 

independent translation and rotation relative to the axes. This results in two DoF 

- Spherical pair (ball joint), e.g. Fig. 1v: the spherical centres of the two parts are 

aligned, allowing rotation about three axes and no translation. This results in 

three DoF  

- Planar pair, e.g. Fig. 1vi: the surfaces of the two parts are in contact, allowing 

translation in two directions and rotation about one axis, perpendicular to the 

surfaces in contact. This results in three DoF 

In the design of a mechanism, kinematic pairs can be combined in chains to create 

models of complicated motions [6]. These are often abstracted as graphs or 

hypergraphs of links and nodes which can be used to determine the potential motion 

of a mechanism, based on connections, but without consideration of geometry [7]. 

Consequently, when a design is realised as a physical model, complications can arise 

when geometry interacts or collides during the motion of parts.  

 

Fig. 1. Examples of the six lower kinematic pairs 

The spatial nature of kinematic pairs implies that mechanisms can be readily 

described as shapes in shape computations, and there are certain benefits in doing so. 

Shapes can provide a model of a mechanism that includes geometry as well as 



connection of parts, whilst retaining a level of abstraction that can support creative 

exploration. Designers are primarily concerned with modelling physically realisable 

designs. However, real motions are not necessarily easily described using shape 

computation. Conversely, more abstract notions of motion which could not be 

achieved in the physical world can give interesting results when modelled virtually, 

and therefore should not be precluded from investigation. Shape computations can be 

used to design and explore mechanisms in a designer-friendly way which is visually 

intuitive [5]. In this paper, kinematic shapes are used to model mechanisms and their 

motion, with reference to the lower kinematic pairs. 

3 Kinematic Shapes 

In a shape grammar, shape rules are used to generate designs through consideration of 

shapes and the spatial relation between shapes and/or parts of shapes [1]. Any two 

shapes (or parts of a shape) define a spatial relation. For example, all of the shapes in 

Fig. 2 are composed of the same three parts: a small square, a larger square, and a 

point located at their shared vertex. But, the shapes are all distinct from each other 

because of the different spatial relation between the two squares. Shape grammars 

often make use of such relations through applications of shape rules which produce 

repetition of form and arrangement and can result in visually cohesive patterns, or 

designs consistent with a particular style [9].  

 

Fig. 2. Examples of spatial relations 

The spatial relations used in a shape grammar are typically fixed, or for parametric 

shape grammars are instantiated during application of a shape rule. Spatial relations 

can change via application of shape rules but this does not reflect the behaviour of 

mechanisms, such as the lower pairs illustrated in Fig. 1, where spatial relations 

between parts change continuously according to their motion. Therefore, to support 

formal exploration of mechanisms via shape computation, it is necessary to consider 

the motion according to variable spatial relations (VSR) between parts, i.e. the 

continuously changing relation between parts that are in motion.  

VSRs result from well-defined motions of parts, and a kinematic shape is a shape 

which includes one or more VSRs between its parts. For example, in the eight shapes 



in Fig. 2 the spatial relations between the small and large squares vary according to 

the rotation of the small square about the point. These eight shapes can be recognised 

as instantiations of a kinematic shape in which there is a VSR between the two 

squares, defined according to a rotation of the small square. This motion is not a 

consequence of transformations realised during application of shape rules, it is instead 

an implicit property of the kinematic shape. As kinematic shapes, all eight of the 

shapes in Fig. 2 are equal, and comparison with Fig. 1 reveals that they are a two-

dimensional equivalent of a revolute pair (Fig. 1ii). This example highlights the key 

features of kinematic shapes; they include connected parts that are in motion. 

3.1 Shapes in Motion 

Shape algebras [1] provide a framework suitable for exploring motion of shapes, as 

summarised in Table 1. The algebras are denoted Uij, where i is the dimension of the 

shape elements used to construct a shape, j is the dimension of the embedding space, 

and i ≤ j. Motion of a shape is defined according to a reference shape which is a shape 

element of dimension k, where k < j, and the lower dimensional embedding spaces, 

defined by points and lines, are more restrictive with respect to motion than the higher 

dimensional spaces of planes and volumes.  

Table 1. Shape motion in algebras Uij 

Algebra Space Motion Reference DoF 

U00 Point - - - 

Ui1 Line Translation Point 1 

Ui2 Plane Rotation Point 1 

Translation Point 2 

Translation Line 1 

Ui3 Volume Rotation Point 3 

Rotation Line 1 

Translation Point 3 

Translation Line 1 

Translation Plane 2 

In the algebra U00, the embedding space is a single point, and no motion is 

possible. While in algebras Ui1, the embedding space is a straight line, shapes are 

composed of points or lines, and the only possible motion is translation. This is 

defined relative to a point, with one degree of freedom (DoF). Algebras Ui2 are 

familiar to designers who work with sketches to develop design concepts. The 

embedding space is a plane, shapes are composed of points, lines or planes, and 

motion is composed of rotations and translations. Rotation is defined relative to a 

point, with one DoF, and translation is defined relative to a point, with two DoFs, or 

relative to a line with one DoF. Algebras Ui3 are analogous to physical space, or the 

3D space within a CAD system. The embedding space is a volume, shapes are 

composed of volumes, planes, lines or points, and as with Ui2 motion is composed of 

translations and rotations. Rotation is defined relative to a point, with three DoFs, or a 



line, with one DoF, while translation is defined relative to a point, with three DoFs, or 

a plane, with two DoFs. As an example, Fig. 3 illustrates moving shapes in the 

algebra U22, where shapes composed of planes are arranged in a plane. Representing 

motion in a static image can be difficult, and Fig. 3 adopts a convention of using 

arrows to indicate the motion of the squares. In Fig. 3i, a square is rotated around a 

reference point, in Fig. 3ii, a square is translated relative to a reference point, and in 

Fig. 3iii a square is translated relative to a reference line.  

 

Fig. 3. Moving shapes in U22 

Shapes with moving parts, i.e. kinematic shapes, can also be formalised in algebras 

Uij, by considering relative motions of the parts that results in a VSR. The simplest 

kinematic shapes are described by a triple of shapes, {s, α, e}, where s represents a 

static part, α represents a moving part, and e represents a reference shape, as 

enumerated in Table 1. The existence of multiple parts which move independently 

distinguishes the kinematic shape from a shape in motion, but the motion of α, the 

moving part, is not defined relative to s, the static part. For example, the kinematic 

shape in Fig. 2 is composed of two squares, and the rotation of the small square is not 

defined relative to the large square, it is instead defined relative to the point, which 

acts as the reference shape. In general, the motion of a moving part α is defined 

relative to e, the reference shape, which is a shape element, of dimension k, in an 

algebra Uij, k < j. The VSR therefore defines the spatial relationship between α and e, 

and VSR(α, e) is a shape given by an instantiation of the motion of α relative to e. A 

simple kinematic shape is therefore given by s + VSR(α, e). For connected kinematic 

shapes, such as the shape illustrated in Fig. 2, the VSR can be determined by 

considering the connectivity of the parts s and α. 

3.2 Shapes with Connected Parts 

Shapes are connected when they touch, and a shape is said to be a connected shape 

when each part touches some other part [1]. For example, Fig. 4 illustrates different 

connected shapes in U22, composed of two squares, labelled x and y. In Fig. 4a, the 

squares are connected because x is a subshape of y; in Fig. 4b, they are connected 

because they overlap; and in Fig. 4c-f they are connected because they touch, either at 

their edges or at their vertices. 

Shape connectivity can be defined in terms of the recursive embedding relation 

applied to parts, boundaries of parts, boundaries of the boundaries of parts, etc. [1]. 

The boundary of a shape in an algebra Uij is a shape in an algebra U(i-1)j, and the 



operator bi(S) formalises this recursive relation between boundaries b, and shapes S, 

with integer i ≥ 0 and b0(S) = S. For example, a shape S in U33 is composed of volume 

shape elements and has a boundary b(S) composed of planes in U23. This in turn has a 

boundary b2(S) composed of lines in U13, which in turn has boundary b3(S) composed 

of points in U13. For all the connected shapes in Fig. 4, x and y contain parts that share 

a boundary, i.e. an edge, or a boundary of a boundary, i.e. a vertex. 

 

Fig. 4. Examples of connected shapes in U22 

 Generalising this example, using the boundary operator and subshape relation ≤, 

two shapes, x and y, can be defined as connected if there are shapes z and z’ such that 

z ≤ bi(x) and z’ ≤ bj(y), and bk(z).bl(z’) is not the empty shape, with integers i, j, k, l ≥ 

0. This definition can be applied to the connected shapes in U22 illustrated in Fig. 4, as 

follows, although there may be many possible choices of z and z’ in each case:  

- in Fig. 4i, x is embedded in y; z and z’ are both in U22, z ≤ x and z’ ≤ y so that z.z’ 

is not the empty shape 

- in Fig. 4ii, x and y overlap; z and z’ are both in U22, z ≤ x and z’ ≤ y so that z.z’ is 

not the empty shape 

- in Fig. 4iii, x and y share part of their boundary; z and z’ are both in U12, z ≤ b(x) 

and z’ ≤ b(y) so that z.z’ is not the empty shape 

- in Fig. 4iv, x and y share part of their boundary; z and z’ are both in U12, z ≤ b(x) 

and z’ ≤ b(y) so that z.z’ is not the empty shape  

- in Fig. 4v, x and y share a vertex; z and z’ are both in U02, z ≤ b2(x) and z’ ≤ b2(y) 

so that z.z’ is not the empty shape 

- in Fig. 4vi, an edge of x touches a vertex of y; z is in U12, z’ is in U01, z ≤ b(x) and 

z’ ≤ b2(y) so that b(z). b0(z’) is not the empty shape 

This definition of shape connectivity is fairly intuitive, and captures the idea that 

shapes are connected if their parts touch. It also applies to shapes in composite 

algebras, which are composed of spatial elements of different dimensions.  

In shape grammars, connectivity between parts of a shape is temporary and 

changing, depending on the application of rules that dynamically alter the structure of 

a shape [1]. Similarly, in kinematic shapes, the connectivity between parts also 

changes, but not according to rule applications, instead according to different 

instantiations of the VSR, given by VSR(α, e). For example, in Fig. 2 as the small 

square rotates about the point, the connectivity of the two squares changes: in Fig. 2i-

iii, the two squares are connected due to the shared vertex, but in Fig. 2iv&viii, they 

are connected due to a shared boundary, while in Fig. 2v&vii, they are connected due 

to a shared part, and in Fig. 2vi, they are connected because the small square is 

embedded in the large square. If they are retained, these different connections have 



implications with respect to the potential motion of the small square, as illustrated in 

Fig. 5. In these examples, connectivity of the small and large squares is explicitly 

identified by the shape elements drawn in black, and the arrows are used to indicate 

the motion of the small square according to the VSR. Fig. 5i combines all the shapes 

from Fig. 2 into a single kinematic shape; the two squares are connected at a shared 

vertex and the VSR is defined by the rotation of the small square about this point. The 

shape is a U22 equivalent of a revolute pair (Fig. 1ii). In Fig. 5ii, the two squares are 

connected at a shared edge, and the VSR is defined by the horizontal translation of the 

small square parallel to the edge. The shape is a U22 equivalent of a planar pair (Fig. 

1vi). In Fig. 5iii, the two squares overlap and are connected by a shared subshape. 

Consequently, they are locked in position and the small square cannot move. In these 

three examples, the spatial relations of the two squares are instantiations of the 

kinematic shape illustrated in Fig. 2, but different interpretations of the connectivity 

of the kinematic shape give rise to different possible motions. Ambiguity about how 

connectivity of shape is interpreted can be reduced by explicitly including connecting 

shape elements as part of the shape; for example these are drawn in black in Fig. 5.  

 

Fig. 5. Motion of connected shapes 

In these examples, the connecting elements also act as a reference shape, and 

define the motion of the small square, and this is potentially of benefit. When the 

connecting shape element and the reference shape are different a restriction of 

potential motion can result, as illustrated in Fig. 6. In Fig. 6i, rotation of the small 

square about the reference point, identified at its centre, is restricted due to the 

connectivity of the two squares, as specified by the black line on the shared boundary. 

The connectivity of the two squares is such that only vertical translation of the small 

square is possible, as illustrated in Fig. 6ii, where the connecting shape is the 

reference shape. Alternatively, if a rotating part is required, then this issue can be 

resolved by changing the geometry of the parts, as illustrated in Fig. 6iii where the 

small square is replaced with a circle. The boundary of a circle is invariant under 

rotation, and as a result the specified motion is not restricted by the connectivity of 

the parts. The shape in Fig. 6iii is a U22 equivalent of a spherical pair (Fig. 1v). 

 

Fig. 6. Exploring the consequences of shape connectivity 



The explicit inclusion of connecting shapes means that kinematic shapes begin to 

behave more as physical objects, where motion is defined not only according to 

abstract concepts such as reference shapes, but also according to interactions between 

parts. However, this gives rise to a conflict between the expected behaviour of shapes 

in a shape grammar, and the expected behaviour of a mechanism. For example, in Fig. 

2, as the small square rotates it overlaps the large square so that there are parts of both 

that occupy the same region of the embedding space. Since shape grammars are a 

visual formalism, when this situation arises, it is common for overlapping shapes to 

merge and form a single shape element. However, for physical mechanisms it not 

possible for parts to occupy the same region of space, and parts in motion should 

remain distinct. This issue can be resolved by recognising that physical mechanisms 

behave as things made of stuff, and should be modelled within making grammars [5].  

3.3 Kinematic Shapes as Things made of Stuff 

Making grammars [3] apply the computational framework of shape grammars to 

physical objects, and model processes of making that take place in the arts, crafts, and 

manufacturing. To support this, shape algebras are extended to include spatial stuff, 

which is the composite matter of physical things, and making grammars incorporate 

actions applied to stuff as consequences of sensing its properties, e.g. by seeing or 

touching. Examples include knotting of strings in Incan khipu and painting with 

watercolours [3]. However, as discussed in the previous section, physical objects 

exhibit different behaviours to shapes, and these should be taken into consideration 

when exploring how computations for making grammars might work within shape 

algebras. Krstic [4] identified key factors that distinguish things and stuff used in 

making grammars from shapes and parts used in shape grammars. These are 

concerned with the equivalence of representations in different algebras, and the 

treatment of boundaries.  

Stuff and things are by definition three-dimensional, and in shape algebras are 

therefore most naturally represented in algebras U33, where volumes are arranged in 

three-dimensional space. For the purposes of illustration, it is also useful to consider 

two-dimensional equivalents in algebras U22, where planes are arranged in two-

dimensional space. In design, it is common to use boundaries as a representation for a 

shape, e.g. in solid modelling surface-based models are common, with U33 objects 

represented in U23. However, representing material things for making in an algebra 

Uij, where i < j can give rise to conceptual inconsistencies. This is illustrated in Fig. 7 

where a shape rule a → b is represented in three different algebras, which are visually 

similar but conceptually very different.  

 

Fig. 7. Examples of shape rules in i) U12, ii) U22 and iii) U22×U12 



In the rule in Fig. 7i, the shapes a and b are both in U12 and this is a typical 

example of a rule from a shape grammar for design applications. It is an addition rule, 

with a square (composed of four lines) added to the square recognised by the left-

hand side, and the partial order of the shapes in the rule is a < b. Compare this to the 

rule in Fig. 7ii, where the shapes a and b are both in U22 and the rule could be from a 

making grammar, e.g. to model cutting a hole in a sheet of material. It is a subtraction 

rule, with a planar square subtracted from the square recognised by the left-hand side, 

and the partial order of the shapes in the rule is a > b. These two rules are related by 

the boundary function b(S), with the shapes in the rule in Fig. 7i being the boundaries 

of the shapes in the rule in Fig. 7ii. Because of this, and despite the visual similarity 

of the two rules, they perform opposite functions, one adds a square, while the other 

subtracts a square [4]. This example illustrates that the logic of rules for boundaries, 

e.g. the U12 rule in Fig. 7i, does not reflect the logic of making, which in this example 

is better modelled by the U22 rule in Fig. 7ii. But, rules for shapes in a Uii algebra 

(such as U22), where shapes and the embedding space are of the same dimension, are 

also problematic, because they are unconstrained, and can be applied to any shape in 

Uii in infinitely many ways. Because of this, Krstic [4] suggests that in making 

grammars rules should include shapes and their boundaries, as illustrated in Fig. 7iii. 

This rule includes shapes from the composite algebra U22×U12, and works as expected 

for a making grammar because the inclusion of boundaries provides context to ensure 

that the rule is applied correctly. Shapes in Uii algebras together with their boundaries 

form a subalgebra of Uii×U(i-1)i, denoted UBi, which contains ordered pairs of shapes 

and their boundaries [11]. These algebras are weaker than shape algebras Uij, because 

they lack Boolean operations of sum, product and difference, and partial order is 

defined component-wise, for shapes and their boundaries. But they are useful for 

modelling things in making grammars because they preserve the boundaries of 

shapes, which are useful to streamline rule application [4].  

The UBi algebras are closed under symmetric difference which can be used in the 

application of shape rules in a shape grammar. The symmetric difference of two 

shapes, x and y, is composed of the parts that are in either of the shapes, but not in 

their intersection and is given by x ⊕ y = (x – y) + (y – x), or equivalently x ⊕ y = (x 

+ y) – (x · y). For the boundaries of shapes in Uii algebras symmetric difference is 

distributive, so that b(x ⊕ y) = b(x) ⊕ b(y), where x and y are in Uii, and for shapes in 

Uij, it can replace sum when shapes are disjoint or difference when one shape is 

embedded in the other [10]. Specifically, x ⊕ y = (x + y) if (x · y) = 0, and x ⊕ y = y – 

x if x ≤ y. Using symmetric difference, a shape rule a → b can be applied to shape c 

under a transformation t when a ≤ c and [c – t(a)] · t(b) = 0, to give c’ = [c ⊕ t(a)] ⊕ 

t(b) [4]. The subshape condition, a ≤ c, ensures that the first instance of the symmetric 

difference results in a subtraction of t(a) from c while the discrete condition, [c – t(a)] 

· t(b) = 0, ensures that the second instance results in the addition of t(b) to c – t(a). A 

further condition on the boundaries of the shapes, b(t(a)) · b(c) ≠ 0, can be applied to 

provide registration for transformation t and restrict the applications of rules.  

The discrete condition [c – t(a)] · t(b) = 0 has the additional benefit of giving 

shapes the behaviour of physical objects during rule application, by avoiding 

collisions between parts. It ensures that the shape b on the right-hand side of the rule 



does not collide with the shape that remains after subtracting the shape a from the 

left-hand side of the rule. For kinematic shapes this mechanism for collision 

protection is useful, and should be applied continuously to moving parts. To achieve 

this, a VSR condition should also be included, so that that in a simple kinematic shape 

composed of a triple of shapes, {s, α, e} the static part s and the moving part α should 

always be discrete, i.e. s · VSR(α, e) = 0. This will ensure that the parts of a kinematic 

shape do not overlap as a result of its motion. 

4 Kinematic Rules for Kinematic Grammars 

Inclusion of kinematic shapes in shape/making grammars requires a mechanism for 

distinguishing between parts of shapes that are in motion and those that are static. For 

this purpose, one of two opposing philosophical approaches can be adopted. It can 

either be assumed that, by default, parts are in motion, or that they are static. In the 

first approach, all parts of a kinematic shape are free to move around the embedding 

space, except for parts which are explicitly identified as being static. In the second 

approach, all parts of a kinematic shape are static relative to the embedding space, 

except for parts which are explicitly identified as being in motion relative to specified 

reference shapes. In terms of physical intuition, either approach is equally valid, since 

it can be recognised that, in general, objects tend to be free to move, unless they are 

constrained in some way while, when designing mechanisms, it is common to assume 

that parts are static unless their motion is specified. In this paper, the second approach 

has been assumed, and the notation used in the examples presented identifies parts of 

a kinematic shape that are in motion. Symbolically, the moving parts are represented 

with a Greek letter, while visually they are represented using a lighter shade of grey 

and are labelled with an arrow to indicate the resulting motion. This notation is 

simplistic, and useful for the exploration presented here, but there is perhaps benefit 

in exploring alternative representations using colour grammars [12] or weights [13] to 

support greater exploration of languages of kinematic designs.  

In a kinematic grammar, motion can be introduced to a static shape by applying 

kinematic shape rules which take the form a → b + VSR(α, e). Here, a and b are static 

shapes in UBi, α is a moving shape, also in UBi. e is shape element in Uki (k < i) and 

acts as both a connecting shape element for b and α, and as a reference shape for the 

motion of α. VSR(α, e) is a UBi shape given by an instantiation of the motion of α 

relative to e. Fig. 8 illustrates an example of a kinematic shape rule (Fig. 8i) and its 

application to a static shape (Fig. 8ii) to produce a kinematic shape (Fig. 8iii). 

 

Fig. 8. Example of a kinematic shape rule and its application to a static shape 



In Fig. 8iii the motion of the kinematic shape is illustrated by the inclusion of 

overlapping instantiations of the moving part, all of which observe the collision 

protection condition s · VSR(α, e) = 0. The result is a shape that is a two-dimensional 

equivalent of a revolute pair (Fig. 1ii). In this example, the logic of rule application 

follows the shape grammar formalism, and since a · b ≠ 0 the rule proceeds by 

recognising and replacing the shape a – b with VSR(α, e). Alternatively, if a · b = 0 

then the rule would proceed by replacing a with b and adding a moving part. 

Kinematic shapes can also be combined into chains, to model mechanisms with 

more complicated motions. In a kinematic grammar this can be achieved by applying 

kinematic shape rules which take the form VSR(α, e) → VSR(β, e) + VSR(γ, f). Here, 

α, β and γ are moving shapes in UBi. e is a shape element in Uki (k < i) and is the 

reference shape for the motion of α and β. f is both a connecting shape element for β 

and γ and is also the reference shape for the motion of β. VSR(α, e), VSR(β, e) and 

VSR(γ, f) are UBi shapes given by instantiations of the motion of the moving shapes α, 

β and γ relative to e, e and f, respectively. Fig. 9 illustrates an example of a kinematic 

shape rule (Fig. 9i) and its application to the kinematic shape in Fig. 8iii. In this 

example α · β = 0 and the rule proceeds by adding the second moving part, modelled 

by VSR(γ, f). Alternatively, if β < α, then VSR(α, e) is replaced with two moving parts 

modelled by VSR(β, e) and VSR(γ, f). As a result of applying the rule, the kinematic 

shape in Fig. 9ii has two parts in motion, both of which rotate about a connecting 

point. The result is a shape that is a two-dimensional equivalent of two revolute pairs 

(Fig. 1ii) combined in sequence. The motion of the kinematic shape is too 

complicated to be illustrated according to the method used in Fig. 8. Instead, in Fig. 

9iii it is illustrated according to the envelopes of motion of the two moving parts. 

These define a sub-space of the embedding space and are represented as shaded 

regions. For both moving parts, the motion is restricted according to the connectivity 

of the parts, and according to the collision protection conditions s · VSR(β, e) = 0, and 

VSR(β, e) · VSR(γ, f) = 0, where s is the stationary part of the shape, and β and γ are 

the moving parts. 

 

Fig. 9. Example of a kinematic shape rule and its application to a kinematic shape 

Application of kinematic shape rules requires a mechanism for recognising 

embedded parts of a shape. This is complicated by VSRs, since spatial relations 

between moving parts are dynamic and cannot be used to provide registration for 

determining where shape rules can be applied. For example, the kinematic shape rule 



illustrated in Fig. 10i is of the form a + VSR(α, e) → b and its application requires 

recognition of both a static part and a moving part. Rules of this form can be used to 

remove moving parts from a kinematic shape, and include static shapes a and b, both 

in UBi, moving shape α, also in UBi, shape element e in Uki (k < i) and VSR(α, e), a 

UBi shape given by an instantiation of the motion of α relative to e. In applying the 

rule, recognition of a, the static shape on the left-hand side of the rule, follows the 

logic of rule application from shape grammars, where rule a → b applied to a shape c 

proceeds by first identifying a transformation t such that t(a) is an embedded part of c, 

t(a) ≤ c. The rule is then applied by removing the transformed instance of the shape a 

and replacing it with a similarly transformed instance of the shape b. In practice, 

identification of the transformation t is implemented by considering how distinct 

elements of a, such as vertices, are transformed and ensuring that all distinct elements 

of t(a) are embedded in c [14]. For the moving shape on the left-hand side of the rule, 

this approach does not work, because the spatial relation between its distinct elements 

is changing according to the motion of α relative to e, and an alternative approach 

must be identified for recognising the moving parts of a shape. For this purpose, the 

invariants of the motion can be employed to identify the VSR between distinct 

elements, and the reference of motion. For example, to apply the rule in Fig. 10i to the 

kinematic shape in Fig. 10ii requires that the static and moving parts of the shape on 

the left-hand side of the rule are recognised as parts. Fig. 10iii illustrates the distinct 

elements of the shape in Fig. 10ii that are used to support this recognition. The motion 

of the moving part is a rotation about the connecting point, and consequently the 

distance from this point is invariant. In Fig. 10iii this is illustrated by dashed lines, 

which are of equal length for the two instantiations of the motion. These provide 

enough information to determine how the shape rule can be applied, and the result is 

the shape in Fig. 8ii. 

 

Fig. 10. Recognising parts of a kinematic shape 

5 Discussion 

This paper has explored how the shape grammar formalism can be applied to the 

problem of designing mechanisms with moving parts. With reference to the lower 

kinematic pairs (Fig. 1), kinematic shapes were introduced as connected shapes 

composed of static parts, moving parts and shape elements used as reference for 

motion. In essence each kinematic shape represents an infinite number of static 

shapes, each of which is given by an instantiation of the moving parts. Despite this it 

is still possible to recognise kinematic shapes and their moving parts for the purpose 

of rule application in a kinematic grammar by considering the invariants of motion. 



A variety of kinematic shapes were introduced as illustrations, and these were 

identified to be two-dimensional equivalents of the revolute pair (Fig. 5i), the 

spherical pair (Fig. 6iii) and the planar pair (Fig. 6ii). The other lower kinematic pairs, 

the prismatic pair, the screw pair and the cylindrical pair, do not have two-

dimensional equivalents, because they would violate the collision condition, which 

ensures that parts of shapes do not occupy the same region of an embedding space. 

For visual shapes this is common, e.g. overlapping planes, intersecting volumes, etc., 

but as models of mechanisms, kinematic shapes should behave as physical things 

composed of spatial stuff, and collision between moving parts should be avoided. 

However, the prismatic pair, the screw pair and the cylindrical pair can be represented 

as three-dimensional shapes, in an UB3 algebra, as illustrated in Fig. 11. For each of 

these kinematic shapes, the moving cuboid is connected to the static shape by a shared 

surface, and the motion of the cuboid is with reference to a line that is parallel to this 

surface. If the collision condition is adhered to, then motion is defined and 

constrained both by the reference line and by the geometry of the static and moving 

parts. As a result, in the prismatic pair only translation parallel to the line is possible, 

in the screw pair, only a screw rotation with dependent motions about and parallel to 

the line is possible, and in the cylindrical pair two independent motions are possible, 

rotation about the line and translation parallel to the line.  

To be of use in the design of mechanisms, kinematic grammars should give some 

indication of the resulting behaviour of kinematic shapes, i.e. the extent of the motion 

of the moving parts. Representing motion in a static image can be difficult, but in this 

paper various approaches have been employed to give some insight, including the use 

of arrows, Fig. 5, inclusion of multiple instantiations of moving parts, Fig. 8iii, and 

inclusion of envelopes of motion of moving parts, Fig. 9iii. Envelopes of motion are 

perhaps the most expressive of these, and as regions of space can themselves be 

modelled and analysed using shape arithmetic.  

 

Fig. 11. Modelling kinematic pairs in U33 

The use of the lower kinematic pairs as a reference for defining kinematic shapes 

has resulted in certain restrictions. Only the motions of connected shapes have been 

considered, and as a consequence not all the motions enumerated in Table 1 are 

applicable. For example, in a two-dimensional embedding space, the moving parts of 

a connected kinematic shape can rotate about a point or translate parallel to a line, but 

cannot translate according to a point. A more general consideration of kinematic 

shapes could take into account all of the possible motions. Also, kinematic grammars 

have been identified as a variation of making grammars, where shapes adhere to 



physical constraints, but with the inclusion of VSRs to account for moving parts. As a 

result, kinematic grammars do not readily support the visual emergence that typifies 

shape grammar applications, and much of the richness of the shape formalism has 

been lost. This is perhaps true for all making grammars since it is not obvious how 

visual emergence can work in a U33 algebra, when from any given view-point only 

part of a shape is visible, and only the boundaries (i.e. surfaces) of a part can be seen. 

However, there is still scope for reinterpretation of shape structure via shape rule 

applications, and emergence can arise in material behaviours of shapes in motion 

[15]. Kinematic connections between parts permit relative motions, and kinematic 

behaviours (or motions) emerge, as indicated in Fig. 9iii; also, when material 

deformations permit relative motions, elastic, plastic or even auxetic behaviours may 

emerge. Consequently rules acting to add multiple interacting VSRs within designs, 

can give rise to emergent kinematic behaviours that may be complex and surprising. 

Future work will explore how kinematic shapes can be included in shape 

computation to formalise motions of physical materials and objects. A more general 

treatment could include broader categories of mechanisms than those considered here. 

Of particular interest is whether a visual approach can result in interesting designs, 

previously only found through application of analytical techniques. 
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