351 research outputs found

    Stability of quantum states of finite macroscopic systems against classical noises, perturbations from environments, and local measurements

    Full text link
    We study the stability of quantum states of macroscopic systems of finite volume V, against weak classical noises (WCNs), weak perturbations from environments (WPEs), and local measurements (LMs). We say that a pure state is `fragile' if its decoherence rate is anomalously great, and `stable against LMs' if the result of a LM is not affected by another LM at a distant point. By making full use of the locality and huge degrees of freedom, we show the following: (i) If square fluctuation of every additive operator is O(V) or less for a pure state, then it is not fragile in any WCNs or WPEs. (ii) If square fluctuations of some additive operators are O(V^2) for a pure state, then it is fragile in some WCNs or WPEs. (iii) If a state (pure or mixed) has the `cluster property,' then it is stable against LMs, and vice versa. These results have many applications, among which we discuss the mechanism of symmetry breaking in finite systems.Comment: 6 pages, no figure.Proof of the theorem is described in the revised manuscrip

    Isolated Eigenvalues of the Ferromagnetic Spin-J XXZ Chain with Kink Boundary Conditions

    Full text link
    We investigate the low-lying excited states of the spin J ferromagnetic XXZ chain with Ising anisotropy Delta and kink boundary conditions. Since the third component of the total magnetization, M, is conserved, it is meaningful to study the spectrum for each fixed value of M. We prove that for J>= 3/2 the lowest excited eigenvalues are separated by a gap from the rest of the spectrum, uniformly in the length of the chain. In the thermodynamic limit, this means that there are a positive number of excitations above the ground state and below the essential spectrum

    Model-independent Study of Electric Dipole Transitions in Quarkonium

    Full text link
    The paper contains a systematic, model-independent treatment of electric dipole (E1) transitions in heavy quarkonium. Within the effective field theory framework of potential non-relativistic QCD (pNRQCD), we derive the complete set of relativistic corrections of relative order v^2 both for weakly and strongly-coupled quarkonia. The result supports and complements former results from potential model calculations.Comment: 42 pages, 9 figure

    Implementing Quantum Gates using the Ferromagnetic Spin-J XXZ Chain with Kink Boundary Conditions

    Get PDF
    We demonstrate an implementation scheme for constructing quantum gates using unitary evolutions of the one-dimensional spin-J ferromagnetic XXZ chain. We present numerical results based on simulations of the chain using the time-dependent DMRG method and techniques from optimal control theory. Using only a few control parameters, we find that it is possible to implement one- and two-qubit gates on a system of spin-3/2 XXZ chains, such as Not, Hadamard, Pi-8, Phase, and C-Not, with fidelity levels exceeding 99%.Comment: Updated Acknowledgement

    Effective field theories for baryons with two- and three-heavy quarks

    Full text link
    Baryons made of two or three heavy quarks can be described in the modern language of non-relativistic effective field theories. These, besides allowing a rigorous treatment of the systems, provide new insight in the nature of the three-body interaction in QCD.Comment: 7 pages, 1 figure; published versio

    Thermodynamics of the anisotropic Heisenberg chain calculated by the density matrix renormalization group method

    Full text link
    The density matrix renormalization group (DMRG) method is applied to the anisotropic Heisenberg chain at finite temperatures. The free energy of the system is obtained using the quantum transfer matrix which is iteratively enlarged in the imaginary time direction. The magnetic susceptibility and the specific heat are calculated down to T=0.01J and compared with the Bethe ansatz results. The agreement including the logarithmic correction in the magnetic susceptibility at the isotropic point is fairly good.Comment: 4 pages, 3 Postscript figures, REVTeX, to appear in J. Phys. Soc. Jpn. Vol.66 No.8 (1997

    On the density matrix for the kink ground state of higher spin XXZ chain

    Full text link
    The exact expression for the density matrix of the kink ground state of higher spin XXZ chain is obtained

    Takahashi Integral Equation and High-Temperature Expansion of the Heisenberg Chain

    Full text link
    Recently a new integral equation describing the thermodynamics of the 1D Heisenberg model was discovered by Takahashi. Using the integral equation we have succeeded in obtaining the high temperature expansion of the specific heat and the magnetic susceptibility up to O((J/T)^{100}). This is much higher than those obtained so far by the standard methods such as the linked-cluster algorithm. Our results will be useful to examine various approximation methods to extrapolate the high temperature expansion to the low temperature region.Comment: 5 pages, 4 figures, 2 table

    From Ground States to Local Hamiltonians

    Full text link
    Traditional quantum physics solves ground states for a given Hamiltonian, while quantum information science asks for the existence and construction of certain Hamiltonians for given ground states. In practical situations, one would be mainly interested in local Hamiltonians with certain interaction patterns, such as nearest neighbour interactions on some type of lattices. A necessary condition for a space VV to be the ground-state space of some local Hamiltonian with a given interaction pattern, is that the maximally mixed state supported on VV is uniquely determined by its reduced density matrices associated with the given pattern, based on the principle of maximum entropy. However, it is unclear whether this condition is in general also sufficient. We examine the situations for the existence of such a local Hamiltonian to have VV satisfying the necessary condition mentioned above as its ground-state space, by linking to faces of the convex body of the local reduced states. We further discuss some methods for constructing the corresponding local Hamiltonians with given interaction patterns, mainly from physical points of view, including constructions related to perturbation methods, local frustration-free Hamiltonians, as well as thermodynamical ensembles.Comment: 11 pages, 2 figures, to be published in PR

    Decay of Superconducting and Magnetic Correlations in One- and Two-Dimensional Hubbard Models

    Full text link
    In a general class of one and two dimensional Hubbard models, we prove upper bounds for the two-point correlation functions at finite temperatures for electrons, for electron pairs, and for spins. The upper bounds decay exponentially in one dimension, and with power laws in two dimensions. The bounds rule out the possibility of the corresponding condensation of superconducting electron pairs, and of the corresponding magnetic ordering. Our method is general enough to cover other models such as the t-J model.Comment: LaTeX, 8 pages, no figures. A reference appeared after the publication is adde
    • …
    corecore