736 research outputs found
Extensions and block decompositions for finite-dimensional representations of equivariant map algebras
Suppose a finite group acts on a scheme and a finite-dimensional Lie
algebra . The associated equivariant map algebra is the Lie
algebra of equivariant regular maps from to . The irreducible
finite-dimensional representations of these algebras were classified in
previous work with P. Senesi, where it was shown that they are all tensor
products of evaluation representations and one-dimensional representations. In
the current paper, we describe the extensions between irreducible
finite-dimensional representations of an equivariant map algebra in the case
that is an affine scheme of finite type and is reductive.
This allows us to also describe explicitly the blocks of the category of
finite-dimensional representations in terms of spectral characters, whose
definition we extend to this general setting. Applying our results to the case
of generalized current algebras (the case where the group acting is trivial),
we recover known results but with very different proofs. For (twisted) loop
algebras, we recover known results on block decompositions (again with very
different proofs) and new explicit formulas for extensions. Finally,
specializing our results to the case of (twisted) multiloop algebras and
generalized Onsager algebras yields previously unknown results on both
extensions and block decompositions.Comment: 41 pages; v2: minor corrections, formatting changed to match
published versio
On multigraded generalizations of Kirillov-Reshetikhin modules
We study the category of Z^l-graded modules with finite-dimensional graded
pieces for certain Z+^l-graded Lie algebras. We also consider certain Serre
subcategories with finitely many isomorphism classes of simple objects. We
construct projective resolutions for the simple modules in these categories and
compute the Ext groups between simple modules. We show that the projective
covers of the simple modules in these Serre subcategories can be regarded as
multigraded generalizations of Kirillov-Reshetikhin modules and give a
recursive formula for computing their graded characters
Human Exposure to Radiofrequency Energy above 6 GHz: Review of Computational Dosimetry Studies
International guidelines/standards for human protection from electromagnetic
fields have been revised recently, especially for frequencies above 6 GHz where
new wireless communication systems have been deployed. Above this frequency a
new physical quantity "absorbed/epithelia power density" has been adopted as a
dose metric. Then, the permissible level of external field strength/power
density is derived for practical assessment. In addition, a new physical
quantity, fluence or absorbed energy density, is introduced for protection from
brief pulses (especially for shorter than 10 sec). These limits were explicitly
designed to avoid excessive increases in tissue temperature, based on
electromagnetic and thermal modeling studies but supported by experimental data
where available. This paper reviews the studies on the computational
modeling/dosimetry which are related to the revision of the
guidelines/standards. The comparisons with experimental data as well as an
analytic solution are also been presented. Future research needs and additional
comments on the revision will also be mentioned.Comment: 38 pages, 3 figure
High-speed atomic force microscopy reveals a three-state elevator mechanism in the citrate transporter CitS
The secondary active transporter CitS shuttles citrate across the cytoplasmic membrane of gram-negative bacteria by coupling substrate translocation to the transport of two Na(+) ions. Static crystal structures suggest an elevator type of transport mechanism with two states: up and down. However, no dynamic measurements have been performed to substantiate this assumption. Here, we use high-speed atomic force microscopy for real-time visualization of the transport cycle at the level of single transporters. Unexpectedly, instead of a bimodal height distribution for the up and down states, the experiments reveal movements between three distinguishable states, with protrusions of ∼0.5 nm, ∼1.0 nm, and ∼1.6 nm above the membrane, respectively. Furthermore, the real-time measurements show that the individual protomers of the CitS dimer move up and down independently. A three-state elevator model of independently operating protomers resembles the mechanism proposed for the aspartate transporter Glt(Ph). Since CitS and Glt(Ph) are structurally unrelated, we conclude that the three-state elevators have evolved independently
- …