200 research outputs found

    Effect of Green Tea on Free Radical Activities in Rat Teratoma

    Get PDF

    Alloxan Induced Cataract in a Rat

    Get PDF
    We have measured lipid peroxidation and the activity of antioxidant enzymes in lenses of alloxan injected rats. After 12 weeks alloxan treated rats developed lens cataract. Diabetes rats had both lower lens weight and lower level of proteins in soluble fraction of lens homogenate. Alloxan treatment is associated with a significant increase of thiobarbituric acid reactive substances and the activity of antioxidant enzymes superoxide dismutase and catalase. However, diabetes decreased the activity of glutathione peroxidase in rat lenses. These results show that alloxan, which changes antioxidant status in rat lenses, may cause complications associated with diabetes

    The Coral Bleaching Automated Stress System (CBASS): A Low-Cost, Portable System for Standardized Empirical Assessments of Coral Thermal Limits

    Get PDF
    Ocean warming is increasingly affecting marine ecosystems across the globe. Reef-building corals are particularly affected by warming, with mass bleaching events increasing in frequency and leading to widespread coral mortality. Yet, some corals can resist or recover from bleaching better than others. Such variability in thermal resilience could be critical to reef persistence; however, the scientific community lacks standardized diagnostic approaches to rapidly and comparatively assess coral thermal vulnerability prior to bleaching events. We present the Coral Bleaching Automated Stress System (CBASS) as a low-cost, open-source, field-portable experimental system for rapid empirical assessment of coral thermal thresholds using standardized temperature stress profiles and diagnostics. The CBASS consists of four or eight flow-through experimental aquaria with independent water masses, lighting, and individual automated temperature controls capable of delivering custom modulating thermal profiles. The CBASS is used to conduct daily thermal stress exposures that typically include 3-h temperature ramps to multiple target temperatures, a 3-h hold period at the target temperatures, and a 1-h ramp back down to ambient temperature, followed by an overnight recovery period. This mimics shallow water temperature profiles observed in coral reefs and prompts a rapid acute heat stress response that can serve as a diagnostic tool to identify putative thermotolerant corals for in-depth assessments of adaptation mechanisms, targeted conservation, and possible use in restoration efforts. The CBASS is deployable within hours and can assay up to 40 coral fragments/aquaria/day, enabling high-throughput, rapid determination of thermal thresholds for individual genotypes, populations, species, and sites using a standardized experimental framework

    Genotypic diversity within a natural coastal bacterioplankton population

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of American Association for the Advancement of Science for personal use, not for redistribution. The definitive version was published in Science 307 (2005): 1311-1313, doi:10.1126/science.1106028.The genomic diversity and relative importance of unique genotypes within natural bacterial populations has remained largely unknown. Here, we analyze the diversity and annual dynamics of a group of coastal bacterioplankton (>99% 16S rRNA identity to Vibrio splendidus). We show that this group consists of at least a thousand distinct genotypes, each occurring at extremely low environmental concentrations (on average <1 cell/ml). Overall, the genomes show extensive allelic diversity and size variation. Individual genotypes rarely recurred in samples and allelic distribution did not show spatial or temporal substructure. Ecological considerations suggest that much genotypic and possibly phenotypic variation within natural populations should be considered neutral.This work was supported by grants from the Department of Energy Genomes to Life program and the National Science Foundation. Sequences have been submitted to Genbank under accession numbers AY836800-AY837464

    The Coral Bleaching Automated Stress System (CBASS): A low‐cost, portable system for standardized empirical assessments of coral thermal limits

    Get PDF
    Ocean warming is increasingly affecting marine ecosystems across the globe. Reef-building corals are particularly affected by warming, with mass bleaching events increasing in frequency and leading to widespread coral mortality. Yet, some corals can resist or recover from bleaching better than others. Such variability in thermal resilience could be critical to reef persistence; however, the scientific community lacks standardized diagnostic approaches to rapidly and comparatively assess coral thermal vulnerability prior to bleaching events. We present the Coral Bleaching Automated Stress System (CBASS) as a low-cost, open-source, field-portable experimental system for rapid empirical assessment of coral thermal thresholds using standardized temperature stress profiles and diagnostics. The CBASS consists of four or eight flow-through experimental aquaria with independent water masses, lighting, and individual automated temperature controls capable of delivering custom modulating thermal profiles. The CBASS is used to conduct daily thermal stress exposures that typically include 3-h temperature ramps to multiple target temperatures, a 3-h hold period at the target temperatures, and a 1-h ramp back down to ambient temperature, followed by an overnight recovery period. This mimics shallow water temperature profiles observed in coral reefs and prompts a rapid acute heat stress response that can serve as a diagnostic tool to identify putative thermotolerant corals for in-depth assessments of adaptation mechanisms, targeted conservation, and possible use in restoration efforts. The CBASS is deployable within hours and can assay up to 40 coral fragments/aquaria/day, enabling high-throughput, rapid determination of thermal thresholds for individual genotypes, populations, species, and sites using a standardized experimental framework

    Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study.

    Get PDF
    BACKGROUND: The isolation of symptomatic cases and tracing of contacts has been used as an early COVID-19 containment measure in many countries, with additional physical distancing measures also introduced as outbreaks have grown. To maintain control of infection while also reducing disruption to populations, there is a need to understand what combination of measures-including novel digital tracing approaches and less intensive physical distancing-might be required to reduce transmission. We aimed to estimate the reduction in transmission under different control measures across settings and how many contacts would be quarantined per day in different strategies for a given level of symptomatic case incidence. METHODS: For this mathematical modelling study, we used a model of individual-level transmission stratified by setting (household, work, school, or other) based on BBC Pandemic data from 40 162 UK participants. We simulated the effect of a range of different testing, isolation, tracing, and physical distancing scenarios. Under optimistic but plausible assumptions, we estimated reduction in the effective reproduction number and the number of contacts that would be newly quarantined each day under different strategies. RESULTS: We estimated that combined isolation and tracing strategies would reduce transmission more than mass testing or self-isolation alone: mean transmission reduction of 2% for mass random testing of 5% of the population each week, 29% for self-isolation alone of symptomatic cases within the household, 35% for self-isolation alone outside the household, 37% for self-isolation plus household quarantine, 64% for self-isolation and household quarantine with the addition of manual contact tracing of all contacts, 57% with the addition of manual tracing of acquaintances only, and 47% with the addition of app-based tracing only. If limits were placed on gatherings outside of home, school, or work, then manual contact tracing of acquaintances alone could have an effect on transmission reduction similar to that of detailed contact tracing. In a scenario where 1000 new symptomatic cases that met the definition to trigger contact tracing occurred per day, we estimated that, in most contact tracing strategies, 15 000-41 000 contacts would be newly quarantined each day. INTERPRETATION: Consistent with previous modelling studies and country-specific COVID-19 responses to date, our analysis estimated that a high proportion of cases would need to self-isolate and a high proportion of their contacts to be successfully traced to ensure an effective reproduction number lower than 1 in the absence of other measures. If combined with moderate physical distancing measures, self-isolation and contact tracing would be more likely to achieve control of severe acute respiratory syndrome coronavirus 2 transmission. FUNDING: Wellcome Trust, UK Engineering and Physical Sciences Research Council, European Commission, Royal Society, Medical Research Council

    Extinction times in the subcritical stochastic SIS logistic epidemic

    Get PDF
    Many real epidemics of an infectious disease are not straightforwardly super- or sub-critical, and the understanding of epidemic models that exhibit such complexity has been identified as a priority for theoretical work. We provide insights into the near-critical regime by considering the stochastic SIS logistic epidemic, a well-known birth-and-death chain used to model the spread of an epidemic within a population of a given size NN. We study the behaviour of the process as the population size NN tends to infinity. Our results cover the entire subcritical regime, including the "barely subcritical" regime, where the recovery rate exceeds the infection rate by an amount that tends to 0 as NN \to \infty but more slowly than N1/2N^{-1/2}. We derive precise asymptotics for the distribution of the extinction time and the total number of cases throughout the subcritical regime, give a detailed description of the course of the epidemic, and compare to numerical results for a range of parameter values. We hypothesise that features of the course of the epidemic will be seen in a wide class of other epidemic models, and we use real data to provide some tentative and preliminary support for this theory.Comment: Revised; 34 pages; 6 figure

    Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean

    Get PDF
    Background: Photosynthetic picoeukaryotes (PPE) with a cell size less than 3 µm play a critical role in oceanic primary production. In recent years, the composition of marine picoeukaryote communities has been intensively investigated by molecular approaches, but their photosynthetic fraction remains poorly characterized. This is largely because the classical approach that relies on constructing 18S rRNA gene clone libraries from filtered seawater samples using universal eukaryotic primers is heavily biased toward heterotrophs, especially alveolates and stramenopiles, despite the fact that autotrophic cells in general outnumber heterotrophic ones in the euphotic zone. Methodology/Principal Findings: In order to better assess the composition of the eukaryotic picophytoplankton in the South East Pacific Ocean, encompassing the most oligotrophic oceanic regions on earth, we used a novel approach based on flow cytometry sorting followed by construction of 18S rRNA gene clone libraries. This strategy dramatically increased the recovery of sequences from putative autotrophic groups. The composition of the PPE community appeared highly variable both vertically down the water column and horizontally across the South East Pacific Ocean. In the central gyre, uncultivated lineages dominated: a recently discovered clade of Prasinophyceae (IX), clades of marine Chrysophyceae and Haptophyta, the latter division containing a potentially new class besides Prymnesiophyceae and Pavlophyceae. In contrast, on the edge of the gyre and in the coastal Chilean upwelling, groups with cultivated representatives (Prasinophyceae clade VII and Mamiellales) dominated. Conclusions/Significance: Our data demonstrate that a very large fraction of the eukaryotic picophytoplankton still escapes cultivation. The use of flow cytometry sorting should prove very useful to better characterize specific plankton populations by molecular approaches such as gene cloning or metagenomics, and also to obtain into culture strains representative of these novel groups
    corecore