274 research outputs found

    On Haag Duality for Pure States of Quantum Spin Chain

    Full text link
    We consider quantum spin chains and their translationally invariant pure states. We prove Haag duality for quasilocal observables localized in semi-infinite intervals when the von Neumann algebras generated by observables localized in these intervals are not type I

    Uncertainty Relations for Joint Localizability and Joint Measurability in Finite-Dimensional Systems

    Full text link
    Two quantities quantifying uncertainty relations are examined. In J.Math.Phys. 48, 082103 (2007), Busch and Pearson investigated the limitation on joint localizability and joint measurement of position and momentum by introducing overall width and error bar width. In this paper, we show a simple relationship between these quantities for finite-dimensional systems. Our result indicates that if there is a bound on joint localizability, it is possible to obtain a similar bound on joint measurability. For finite-dimensional systems, uncertainty relations for a pair of general projection-valued measures are obtained as by-products.Comment: 10 pages. To appear in Journal of Mathematical Physic

    Estimating the spectrum of a density operator

    Get PDF
    Given N quantum systems prepared according to the same density operator \rho, we propose a measurement on the N-fold system which approximately yields the spectrum of \rho. The projections of the proposed observable decompose the Hilbert space according to the irreducible representations of the permutations on N points, and are labeled by Young frames, whose relative row lengths estimate the eigenvalues of \rho in decreasing order. We show convergence of these estimates in the limit N\to\infty, and that the probability for errors decreases exponentially with a rate we compute explicitly.Comment: 4 Pages, RevTeX, one figur

    Optimal Cloning of Pure States, Judging Single Clones

    Full text link
    We consider quantum devices for turning a finite number N of d-level quantum systems in the same unknown pure state \sigma into M>N systems of the same kind, in an approximation of the M-fold tensor product of the state \sigma. In a previous paper it was shown that this problem has a unique optimal solution, when the quality of the output is judged by arbitrary measurements, involving also the correlations between the clones. We show in this paper, that if the quality judgement is based solely on measurements of single output clones, there is again a unique optimal cloning device, which coincides with the one found previously.Comment: 16 Pages, REVTe

    Decoherence of multi-dimensional entangled coherent states

    Full text link
    For entangled states of light both the amount of entanglement and the sensitivity to noise generally increase with the number of photons in the state. The entanglement-sensitivity tradeoff is investigated for a particular set of states, multi-dimensional entangled coherent states. Those states possess an arbitrarily large amount of entanglement EE provided the number of photons is at least of order 22E2^{2E}. We calculate how fast that entanglement decays due to photon absorption losses and how much entanglement is left. We find that for very small losses the amount of entanglement lost is equal to 2/log(2)2.892/\log(2)\approx 2.89 ebits per absorbed photon, irrespective of the amount of pure-state entanglement EE one started with. In contrast, for larger losses it tends to be the remaining amount of entanglement that is independent of EE. This may provide a useful strategy for creating states with a fixed amount of entanglement.Comment: 6 pages, 5 figure

    Entanglement, Haag-duality and type properties of infinite quantum spin chains

    Full text link
    We consider an infinite spin chain as a bipartite system consisting of the left and right half-chain and analyze entanglement properties of pure states with respect to this splitting. In this context we show that the amount of entanglement contained in a given state is deeply related to the von Neumann type of the observable algebras associated to the half-chains. Only the type I case belongs to the usual entanglement theory which deals with density operators on tensor product Hilbert spaces, and only in this situation separable normal states exist. In all other cases the corresponding state is infinitely entangled in the sense that one copy of the system in such a state is sufficient to distill an infinite amount of maximally entangled qubit pairs. We apply this results to the critical XY model and show that its unique ground state provides a particular example for this type of entanglement.Comment: LaTeX2e, 34 pages, 1 figure (pstricks

    Quantum Walks with Non-Orthogonal Position States

    Get PDF
    Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develop a general description of such a quantum walk and show how to map it into a standard one with orthogonal states, thereby making available all the tools developed for the latter. This enables a variety of experiments, which can be implemented with smaller step sizes and more steps. Tuning the non-orthogonality allows for an easy preparation of extended states such as momentum eigenstates, which travel at a well-defined speed with low dispersion. We introduce a method to adjust their velocity by momentum shifts, which allows to investigate intriguing effects such as the analog of Bloch oscillations.Comment: 5 pages, 4 figure

    Experimental Purification of Single Qubits

    Full text link
    We report the experimental realization of the purification protocol for single qubits sent through a depolarization channel. The qubits are associated with polarization encoded photon particles and the protocol is achieved by means of passive linear optical elements. The present approach may represent a convenient alternative to the distillation and error correction protocols of quantum information.Comment: 10 pages, 2 figure
    corecore