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Quantum walks have by now been realized in a large variety of different physical settings. In some of

these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding

position states are not orthogonal. We develop a general description of such a quantum walk and show

how to map it into a standard one with orthogonal states, thereby making available all the tools developed

for the latter. This enables a variety of experiments, which can be implemented with smaller step sizes and

more steps. Tuning the nonorthogonality allows for an easy preparation of extended states such as

momentum eigenstates, which travel at a well-defined speed with low dispersion. We introduce a method

to adjust their velocity by momentum shifts, which allows us to experimentally probe the dispersion

relation, providing a benchmarking tool for the quantum walk, and to investigate intriguing effects such as

the analog of Bloch oscillations.

DOI: 10.1103/PhysRevLett.109.240503 PACS numbers: 03.67.�a, 42.50.�p

Quantum walks (QWs) are a widely used model system
for transport processes. Initially introduced from a com-
puter science perspective [1–5], the field has significantly
expanded and is now largely treated from a physics per-
spective [6–10]. In fact, ‘‘quantum walk’’ is now widely
taken to be synonymous with ‘‘discrete time or discrete
space quantum dynamics’’ of a particle with internal
degrees of freedom. On one-dimensional lattices, a QW
can always be implemented by a concatenation of coin
operations and successive state-dependent shifts [11].
Already these one-body systems are capable of simulating
various physical effects such as Anderson localization [12]
or the formation of molecules [10]. In particular, single-
particle QWs are a basic building block in a bottom-up
approach towards general-purpose multi-particle simula-
tion environments [13]. Therefore, one of the main inter-
ests in QWs is the possibility to study key features of
quantum dynamics in a setting which can be controlled
experimentally with high precision.

Experimentally, QWs have been implemented in several
different ways, for example using nuclear magnetic
resonance [14], atoms in optical lattices [15], trapped
ions [16–18], or photonic systems [19–27].

In the theoretical description it is almost universal
practice, to model the different ‘‘positions’’ by mutually
orthogonal subspaces in Hilbert space. However, orthogo-
nality cannot be achieved in some proposals [28–30] and the
related experiments [16–18], which use coherent states of a
harmonic oscillator for the position states (Fig. 1). In order
to fit the theoretical model, it was necessary in the experi-
ment to choose the step size in phase space sufficiently large
to make these states approximately orthogonal.

The aim of this Letter is to show that the lack of
orthogonality can be exploited. First of all, we give a

complete analysis of QWs with nonorthogonal position
states (nQWs), and introduce a transformation to the or-
thogonal case, such that all results known in that case can
be utilized. Therefore, the overlaps between different po-
sition states no longer need to be avoided. In experiments
with trapped ions, one can therefore consider smaller step
sizes and thus run the walk for more steps before the
required Lamb-Dicke approximation breaks down [17].
Second, the transformation of the nQW into a QW

with orthogonal position states encodes the properties
of the nonorthogonality into the initial state of the QW.
Therefore, utilizing the overlap, one can prepare several
interesting initial states directly, in particular, those which
are extended over several positions, such as considered in
Ref. [31]. In contrast, in the orthogonal case with a local-
ized initial state, the preparation requires a more elaborate
process, including several additional operations, some of
which must involve a breaking of the translational symme-
try. Such a preparation process would severely decrease the
fidelity of the experiment.
Furthermore, we show how the initial state can be

shifted in momentum space by including an additional
operation into the walk operator. This allows for the control
of the scaling and the measurement of the dispersion
relation, providing a benchmarking tool for the QW.
Finally, we use this method of momentum shifts to imple-
ment Bloch oscillations [32] as an example for the range of
experiments with nQWs, which can be readily imple-
mented using state-of-the-art technology.
Throughout the Letter, we relate our theory to the

trapped-ion setting (Fig. 1). However, it applies to arbitrary
unitary nQWs in any dimension.
We consider the Hilbert space H ¼ ‘2ðZÞ � C2, with

‘2ðZÞ the position space and C2 the coin space. The
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(normalized but not orthogonal) position states j�xi, with
x 2 Z, form a basis of ‘2ðZÞ. The coin states are given by
the �z-eigenstates jcþi and jc�i, where �x;y;z denote the

Pauli matrices. We assume the initial state of the nQW to
be localized at the origin, that is, �0 ¼ j�0ih�0j � �00 with
�00 ¼ jcþihcþj [33]. One step of the nQW is given by the
application of the walk operatorW ¼ S � ð1 � CÞ, which is
composed of a unitary coin operator C and a unitary shift
operator S. The latter acts as

Sj�ki � jc�i ¼ j�k�1i � jc�i: (1)

In fact, starting from j�0i, the subsequent application of
S defines all other position states. Hence, their overlap
h�kj�li is translation invariant. Modeling the trapped-ion
systems (Fig. 1), we define the overlap function

gðkÞ ¼ h�xj�xþki ¼ expð�k2=�2Þ; (2)

for all x, where � determines the overlap between different
position states.

The probability for finding the walker at position j�xi
after t steps is related to the projector Fx ¼ j�xih�xj
[16,17]. That is,

PtðxÞ ¼ TrððFx � 1Þ �Wt�0W
�tÞ

TrðG � �0Þ ; (3)

where we introduced G ¼ � � 1 with the Gram matrix
� ¼ P

xj�xih�xj for the normalization. Note that the nor-
malization is independent of the step number t, because
½S;G� ¼ 0, which can be checked using the unitarity of S.

In Fig. 2, the position probability distributions of nQWs
with two different realizations of C are illustrated. The
first one [Fig. 2(a)] is with the coin operator CE ¼
expði�=4�yÞ. This type of coin has been implemented

experimentally with the initial state �0 [16–18]. We there-
fore refer to it as the experimental walk. The second coin
operator [Fig. 2(b)] is the Hadamard matrix, which can be

written as CH ¼ �zCE. The coin operators CE and CH are
very similar and indeed, the probability distributions are
equal in the orthogonal case (� ¼ 0). However, in the case
of large overlaps (� * 1), they show significantly different
behavior.
In the following discussion, we will transform the nQW

into an orthonormal basis and show thatW generates a QW
in that basis, but with the initial state being in a superpo-
sition of several position states.
The Gram matrix � gives the relation between the basis

fj�xig and its dual basis fj�0
xi ¼ ��1j�xig, fulfilling

h�xj�0
yi ¼ �xy [34]. This allows us to define an orthonor-

mal basis fjexi ¼ ��1=2j�xig with ��1=2 being Hermitian.
Since the shift operator S commutes with G, its action in
the orthonormal basis is

Sjeki � jc�i ¼ jek�1i � jc�i: (4)

That is, W also defines a QW in the orthonormal basis.
Since the probability for finding the walker in position jexi
is related to the projector ��1=2Fx�

�1=2, we can transform
Eq. (3) to

PtðxÞ ¼ Tr
�
ðjexihexj � 1Þ �Wt ~�0W

�t
�
; (5)

FIG. 2 (color online). Position probability distribution PtðxÞ
(3) after t ¼ 150 steps of a nQW with overlap function gðkÞ (2)
and (a) the experimental coin CE and (b) the Hadamard coin CH

for � ¼ f0; 1:5; 8g [green (light grey), blue (dark grey), red
(medium grey)]. [For the green (light grey) curve, only points
x with PðxÞ � 0 are connected.] In the orthogonal case [green
(light grey)] the probability distributions of both types of walks
are equal; however, for large overlaps they differ significantly
[blue (dark grey), red (medium grey)]. In case (a), the probability
distribution approaches a Gaussian shape centered at the origin
of the walk, as � is increased. The spreading, which is still linear
in the step number t, is vastly reduced [17]. In the Hadamard
case (b), the probability distribution approaches a shape consist-
ing of two Gaussian peaks centered around �t=

ffiffiffi
2

p
. Thus, the

(linear) spreading is increased, as the probabilities between the
peaks vanish. The initial state is �0 ¼ j�0ih�0j � jcþihcþj.

FIG. 1 (color online). nQW implemented in a harmonic-
oscillator phase space. The positions are coherent states, illus-
trated by their Husimi functions, Pð�Þ ¼ jh�j�xij2, for each j�xi
separately. The inlay illustrates their orientation in phase space,
implementing a nQW along a line. Since the position states j�xi
are coherent states, they are not orthogonal. The step size �� ¼
j�1 � �0j ¼

ffiffiffi
2

p
=� [cf. Eq. (2)] of the nQW determines their

overlap. QWs of this type have been implemented with trapped
ions [16–18].
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where the initial state amounts to

~� 0 ¼ G�̂0G

TrðG�̂0GÞ ; (6)

with �̂0 ¼ je0ihe0j � �00. In particular, ~�0 is extended over
several position states according to the overlap function
gðkÞ. However, the fact that ~�0 is extended does not already
imply the properties of the nQW. As shown in Fig. 2, the
experimental and the Hadamard walk show entirely differ-
ent spreading, although they differ only by the coin opera-
tor. In the following discussion, we investigate the
properties of the nQW using Fourier methods and asymp-
totic perturbation theory [35–37].

Given a vector c ¼ P
xjexi � jc xi in ‘2ðZÞ � C2, its

Fourier transform in the conjugate momentum space
L2ð½��;�Þ;C2Þ amounts to c ðpÞ ¼ P

xe
ip�xjc xi. That

is, we consider the Fourier transformed vectors as
C2-valued functions of p.

The walk operator W is translation invariant on ‘2ðZÞ
and thus acts as a multiplication operator in momentum
space, i.e., ðWc ÞðpÞ ¼ WðpÞc ðpÞ, with WðpÞ ¼ SðpÞ � C
and SðpÞ ¼ expðip�zÞ. From the eigendecomposition

WðpÞ ¼ X2
k¼1

ei!kðpÞPkðpÞ; (7)

we obtain the dispersion relations !kðpÞ and the corre-
sponding eigenvectors c kðpÞ, with PkðpÞ denoting the
projector onto c kðpÞ. The eigenvectors c kðpÞ define
Bloch waves with distinct momentum p. The role of the
dispersion relations !kðpÞ is the same as for a particle in a
periodic potential, e.g., an electron in a solid-state system.
It encodes the fundamental transport properties of that
system. In particular, the group velocities vkðpÞ ¼
d!kðpÞ=dp [Fig. 3(a)] determine the spreading behavior
of the initial state of the QW. Precisely, the ballistic order
of the spreading (i.e., linear in t) can be captured by the
time-asymptotic position probability distribution P1ðqÞ,
where q 2 ½�1; 1� denotes the asymptotic scaled (/1=t)
position variable. P1ðqÞ can be computed as the inverse
Fourier transform of the characteristic function

Cð�Þ ¼
Z
½��;�Þ

dp Trð~�0ðpÞei�VðpÞÞ; (8)

with VðpÞ ¼ P
kvkðpÞPk the group-velocity operator [37].

The initial state amounts to ~�0ðpÞ ¼ jgðpÞj2�00, where
gðpÞ is the Fourier transform of the overlap function
gðkÞ. Therefore, for each momentum p, jgðpÞj2 determines
the influence of the corresponding group velocities vkðpÞ
to the asymptotic probability distribution.

The group velocities of the cases CE and CH are the
same, but shifted by p ¼ �=2 [Fig. 3(a)]. Therefore, in the
orthogonal case both walks lead to the same probability
distribution, since jgðpÞj is constant in p. That is, all
velocities vkðpÞ occur with equal weight, leading to non-

zero probabilities in the whole range x 2 ½�t=
ffiffiffi
2

p
; t=

ffiffiffi
2

p �
(Fig. 2). The maximal velocities vkðpÞ ¼ �1=

ffiffiffi
2

p
play a

special role by the formation of caustics, leading to the

well-known peaks at x ¼ �t=
ffiffiffi
2

p
[37].

In the nonorthogonal case, gðpÞ is localized at p ¼ 0,
such that only the related group velocities occur in the

nQW [Fig. 3(a)]. In the Hadamard walk, vkð0Þ ¼ �1=
ffiffiffi
2

p
,

i.e., the velocities that are also most pronounced in
the orthogonal case, whereas in the experimental case
vkð0Þ ¼ 0, such that the position probability remains at
the initial position.
Because of the small but finite width of gðpÞ, also group

velocities close to p ¼ 0 influence the nQW. Since, in the
case CE, they change strongly around p ¼ 0, the width of
the peak in position space increases linearly in t (See
Ref. [17] for numerical results). Similarly, in the case
CH, the widths of the two peaks in position space increase
asymptotically linearly in t, but at a much smaller rate
[cf. the finite widths of the peaks in Fig. 3(b)].
In the following discussion, we introduce a method for

shifting the dispersion relation in momentum space, and
thus, to change the group velocity of the nQW. For a
momentum shift of the amount of �, we apply after each
step the operator 1 � Rð�Þ ¼ 1 � expði��zÞ. Because of
the identity Rð�ÞSðpÞ ¼ Sðpþ�Þ, this is equivalent to a
nQW with the effective walk operator

FIG. 3 (color online). (a) Group velocities vkðpÞ (grey, dotted/
dashed) of the Hadamard-walk and k~�0kðpÞ=ð2�Þ of the initial
states localized at p ¼ 0 [blue (dark solid line)] and p ¼ �=2
[red (light solid line), corresponds to the experimental walk]
with � ¼ 4. (b) Asymptotic position probability distribution
P1ðqÞ for each initial state [blue (dark solid line), red (light
solid line)]. For each initial state only the group velocities
around their points of localization determine the position proba-
bility distribution. That is, since the blue initial state (a) is
localized at p ¼ 0, where vkð0Þ � �1=

ffiffiffi
2

p
, P1ðqÞ consists of

two peaks moving away from the origin with that velocity (b). In
contrast, the red initial state (a) is centered around vkð�=2Þ � 0,
which leads to a localized asymptotic position probability dis-
tribution P1ðqÞ. The coin part of the initial states is �00 ¼
jcþihcþj.
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W�ðpÞ ¼ Sðpþ�Þ � C: (9)

The time evolution is then determined by the group
velocities vkðpþ�Þ. Thus, using the experimental coin
CE, it is possible to achieve the spreading of a Hadamard
walk by including the operator Rð��=2Þ into W. In fact,
since CH ¼ �zCE, the momentum shift with � ¼ ��=2
compensates for the �z factor, up to a complex phase.

The momentum shift method allows for the experimen-
tal determination of the dispersion relations !kðpÞ by
implementing the nQW with W� for several values of
� 2 ½��;�� and determining the scaling of the position
probability distribution for each. This is particularly impor-
tant if the walk operator is not exactly known, e.g., due to
experimental imperfections and in the regime of a high
number of steps.

In semiconductor-superlattices, the driving force for
Bloch oscillations is implemented by a static external
electric field, leading to a linear drift of the electrons’
momentum. The periodic band structure causes the oscil-
latory behavior of the electrons, detectable by optical
methods [38]. The analog of this motion can be imple-
mented in QWs by applying the momentum-shift operator
Rðt � ��Þ (modulo 2�) at the t-th step (for every t), which
implies a shift in momentum space by �� at each step of
the nQW. The walker thus experiences different group
velocities at each step of the walk [Fig. 3(a)], which results
in an oscillating behavior in position space, in contrast to
linear spreading with a constant group velocity (Fig. 4).
Note, that this effect does not require the nonorthogonality
of the position states. However, the simple shape of the
position probability distribution of a nQW (two distinct
Gaussian peaks) can reduce the effort for detection.

A convenient system for the experimental implementa-
tion are trapped ions. Recently, one-dimensional QWs with
three, respectively, 23 steps have been realized in the phase
space of the harmonic motion [16,18] and a protocol for the
extension to 100 steps has been proposed [17]. The number
of steps in these experiments was limited by two require-
ments: on the one hand, the motional amplitude of the ion
needed to remain small, because the implemented proto-
cols [28] were designed assuming the Lamb—Dicke ap-
proximation [39]. On the other hand, the step size ��
(Fig. 1) was chosen sufficiently large in order to minimize
the overlap between neighboring position states. For the
implementation of Bloch oscillations, a small step size is
favored, leading to a significantly higher possible number
of steps. A possible choice of parameter values for a
Lamb–Dicke parameter of � � 0:3, as in Ref. [17], is
given in Fig. 4. The momentum-shift operator Rð�Þ can
be implemented by shifting the phase of the driving light
fields with respect to the relative phase of the coin states
[40]. The positions of the peaks can be determined using
state-of-the-art blue-sideband protocols [39]. During
preparation of our manuscript we were made aware of a
related implementation of Bloch oscillations [41]. In

contrast to that approach, our method does not require a
position-dependent coin operator and may therefore
require less technical effort.
In summary, the transformation of nQWs into orthogo-

nal ones allows for an intuitive understanding of their
properties in terms of the dispersion relations. Hence, by
the momentum-shift method it is possible to change the
spreading behavior, to determine the dispersion relation,
and to implement—by the correspondence to solid-
state systems—the analog effect of Bloch oscillations.
Therefore, the nonorthogonality can be exploited and
need not to be avoided, leading to a higher number of steps
and a new range of experiments with available technology.
Furthermore, nQWs can be considered for modeling trans-
port processes in complex systems and may lead to a better
description than previous approaches.
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