We consider an infinite spin chain as a bipartite system consisting of the
left and right half-chain and analyze entanglement properties of pure states
with respect to this splitting. In this context we show that the amount of
entanglement contained in a given state is deeply related to the von Neumann
type of the observable algebras associated to the half-chains. Only the type I
case belongs to the usual entanglement theory which deals with density
operators on tensor product Hilbert spaces, and only in this situation
separable normal states exist. In all other cases the corresponding state is
infinitely entangled in the sense that one copy of the system in such a state
is sufficient to distill an infinite amount of maximally entangled qubit pairs.
We apply this results to the critical XY model and show that its unique ground
state provides a particular example for this type of entanglement.Comment: LaTeX2e, 34 pages, 1 figure (pstricks