201 research outputs found

    DNA Binding of Centromere Protein C (CENPC) Is Stabilized by Single-Stranded RNA

    Get PDF
    Centromeres are the attachment points between the genome and the cytoskeleton: centromeres bind to kinetochores, which in turn bind to spindles and move chromosomes. Paradoxically, the DNA sequence of centromeres has little or no role in perpetuating kinetochores. As such they are striking examples of genetic information being transmitted in a manner that is independent of DNA sequence (epigenetically). It has been found that RNA transcribed from centromeres remains bound within the kinetochore region, and this local population of RNA is thought to be part of the epigenetic marking system. Here we carried out a genetic and biochemical study of maize CENPC, a key inner kinetochore protein. We show that DNA binding is conferred by a localized region 122 amino acids long, and that the DNA-binding reaction is exquisitely sensitive to single-stranded RNA. Long, single-stranded nucleic acids strongly promote the binding of CENPC to DNA, and the types of RNAs that stabilize DNA binding match in size and character the RNAs present on kinetochores in vivo. Removal or replacement of the binding module with HIV integrase binding domain causes a partial delocalization of CENPC in vivo. The data suggest that centromeric RNA helps to recruit CENPC to the inner kinetochore by altering its DNA binding characteristics

    Centromeres: Long intergenic spaces with adaptive features

    Get PDF
    Abstract Centromeres are composed of inner kinetochore proteins, which are largely conserved across species, and repetitive DNA, which shows comparatively little sequence conservation. Due to this fundamental paradox the formation and maintenance of centromeres remains largely a mystery. However, it has become increasingly clear that a long-standing balance between epigenetic and genetic control governs the interactions of centromeric DNA and inner kinetochore proteins. The comparison of classical neocentromeres in plants, which are entirely genetic in their mode of operation, and clinical neocentromeres, which are sequence-independent, illustrates the conflict between genetics and epigenetics in regions that control their own transmission to progeny. Tandem repeat arrays present in centromeres may have an origin in meiotic drive or other selfish patterns of evolution, as is the case for the CENP-B box and CENP-B protein in human. In grasses retrotransposons have invaded centromeres to the point of complete domination, consequently breaking genetic regulation at these centromeres. The accumulation of tandem repeats and transposons causes centromeres to expand in size, effectively pushing genes to the sides and opening the centromere to ever fewer constraints on the DNA sequence. On genetic maps centromeres appear as long intergenic spaces that evolve rapidly and apparently without regard to host fitness

    A standardized kinesin nomenclature

    Get PDF
    In recent years the kinesin superfamily has become so large that several different naming schemes have emerged, leading to confusion and miscommunication. Here, we set forth a standardized kinesin nomenclature based on 14 family designations. The scheme unifies all previous phylogenies and nomenclature proposals, while allowing individual sequence names to remain the same, and for expansion to occur as new sequences are discovered
    corecore