64 research outputs found

    A Block Oriented Fingerprinting Scheme in Relational Database

    Get PDF
    The need for protecting rights over relational data is of ever increasing concern. There have recently been some pioneering works in this area. In this paper, we propose an effective fingerprinting scheme based on the idea of block method in the area of multimedia fingerprinting. The scheme ensures that certain bit positions of the data contain specific values. The bit positions are determined by the keys known only to the owner of the data and different buyers of the database have different bit positions and different specific values for those bit positions. The detection of the fingerprint can be completed even with a small subset of a marked relation in case that the sample contains the fingerprint. Our extensive analysis shows that the proposed scheme is robust against various forms of attacks, including adding, deleting, shuffling or modifying tuples or attributes and colluding with other recipients of a relation, and ensures the integrity of relation at the same time. ? Springer-Verlag Berlin Heidelberg 2005.EI

    Electromagnetic Transmission of Intellectual Property Data to Protect FPGA Designs

    No full text
    International audienceOver the past 10 years, the designers of intellectual properties(IP) have faced increasing threats including cloning, counterfeiting, andreverse-engineering. This is now a critical issue for the microelectronicsindustry. The design of a secure, efficient, lightweight protection scheme fordesign data is a serious challenge for the hardware security community. In thiscontext, this chapter presents two ultra-lightweight transmitters using sidechannel leakage based on electromagnetic emanation to send embedded IPidentity discreetly and quickl

    Side-Channel Analysis of the TERO PUF

    Get PDF
    Physical Unclonable Functions (PUFs) have the potential to provide a higher level of security for key storage than traditional Non-Volatile Memory (NVM). However, the susceptibility of the PUF primitives to non-invasive Side-Channel Analysis (SCA) is largely unexplored. While resistance to SCA was indicated for the Transient Effect Ring Oscillator (TERO) PUF, it was not backed by an actual assessment. To investigate the physical security of the TERO PUF, we first discuss and study the conceptual behavior of the PUF primitive to identify possible weaknesses. We support our claims by conducting an EM-analysis of a TERO design on an FPGA. When measuring TERO cells with an oscilloscope in the time domain, a Short Time Fourier Transform (STFT) based approach allows to extract the relevant information in the frequency domain. By applying this method we significantly reduce the entropy of the PUF. Our analysis shows the vulnerability of not only the originally suggested TERO PUF implementation but also the impact on TERO designs in general. We discuss enhancements of the design that potentially prevent the TERO PUF from exposing the secret and point out that regarding security the TERO PUF is similar to the more area-efficient Ring Oscillator PUF
    corecore