
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2005

A Block Oriented Fingerprinting Scheme in
Relational Database
Siyuan LIU
Peking University

Shuhong WANG
Peking University

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Weizhong SHAO
Peking University

DOI: https://doi.org/10.1007/11496618_33

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIU, Siyuan; WANG, Shuhong; DENG, Robert H.; and SHAO, Weizhong. A Block Oriented Fingerprinting Scheme in Relational
Database. (2005). Information Security and Cryptology - ICISC 2004: 7th International Conference, Seoul, Korea, December 2-3: Revised
Selected Papers. 3506, 455-466. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/563

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/11496618_33
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


A Block Oriented Fingerprinting Scheme in
Relational Database

Siyuan Liu1,3, Shuhong Wang2,4, Robert H. Deng4, and Weizhong Shao1

1 Institute of Electronics Engineering & Computer Science,
Peking University (PKU), China 100871

iceice@cs.pku.edu.cn, wzshao@pku.edu.cn
2 School of Mathematical Sciences, PKU, China 100871

wshong@math.pku.edu.cn
3 Institute for Infocomm Research, Singapore 119613

4 School of Information Systems,
Singapore Management University, Singapore 259756

robertdeng@smu.edu.sg

Abstract. The need for protecting rights over relational data is of ever
increasing concern. There have recently been some pioneering works in
this area. In this paper, we propose an effective fingerprinting scheme
based on the idea of block method in the area of multimedia fingerprint-
ing. The scheme ensures that certain bit positions of the data contain
specific values. The bit positions are determined by the keys known only
to the owner of the data and different buyers of the database have differ-
ent bit positions and different specific values for those bit positions. The
detection of the fingerprint can be completed even with a small subset of
a marked relation in case that the sample contains the fingerprint. Our
extensive analysis shows that the proposed scheme is robust against var-
ious forms of attacks, including adding, deleting, shuffling or modifying
tuples or attributes and colluding with other recipients of a relation, and
ensures the integrity of relation at the same time.

Keywords: Fingerprinting, Scheme, Block, Security.

1 Introduction

1.1 Background

Due to the rapid development and widespread use of digital assets, such as soft-
ware, images, video, audio and text, protection of ownership of digital content
is increasingly being a matter of great concern. There are many methods to pre-
vent piracy of digital content and fingerprinting, a special type of information
hiding technique, is a very promising one. Consider a scenario where merchants
sell digital data to buyers. Some dishonest buyers may redistribute the data to
others without permission from the merchants. A merchant may use a fingerprint
scheme to embed a buyer-specific mark into a data copy and subsequently detect
the mark in pirated data and use the mark to identify the traitor who distributed

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, pp. 455–466, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



456 S. Liu et al.

the data. Fingerprinting is often discussed in comparison or extension to water-
marking. Watermarking is another type of information hiding technique whose
purpose is to identify the sources of data. A merchant may use a watermarking
scheme to embed a merchant-specific mark into her data and assert ownership
of the data by detecting the watermark. Thus, watermarking is used to embed
marks that identify the merchant while fingerprinting is used to embed marks
that identify legitimate buyers.

Till now, the study of fingerprinting and watermarking has focused mainly on
multimedia content which includes digital images, audio and video. There has re-
cently been some pioneering research presented in [1,2,3] and more recent work of
[7,8] in the area of protecting relational database. In [1], the authors present the
first known database watermarking technique that marks the numeric attributes
of relational data. The algorithm uses a hash function depending on a private
key known only to the owner. The hash function decides the tuples, attributes
within a tuple, and bit positions within an attribute to be marked. Only when
the attackers have access to the private key, can they detect the watermark with
a high probability. The technique survives several attacks and preserves mean
and variance of all numerical attributes. In [2], the authors generalized the wa-
termarking technique in [1] to enable the fingerprinting of relational data. The
fingerprinting technique enables a buyer-specific bit string to be embedded and
extracted from a relational database, as compared to the watermarking tech-
nique which enables a single watermark bit to be embedded and extracted from
a relational database. In [3], the authors extend the technique in [1,2] which
is dependent on primary keys and construct a virtual primary key scheme for
relational databases which do not have primary keys. The schemes in [1,2,3] are
robust against various attacks including flipping bits, adding or deleting tuples
and guessing secret keys.

1.2 Related Work

In [4], the authors propose a block oriented fingerprinting scheme in spatial
domain, which inspires us very much. The scheme first produces one fingerprint
for every buyer and then divides the image to be fingerprinted into a number of
blocks of size β × β and the number of blocks m is equal to ht(I)×wd(I)

β×β (ht(I)
and wd(I) are the height and width of the image in pixels, respectively). Then
the scheme permutes the blocks in an order which is specific for every buyer.
The permutation and the information of the buyer are both stored in a database
known to the merchant only. Then for every block the scheme calculates the
minimum and maximum intensities of the pixels in the block, and according to
the corresponding bit of the fingerprint, increases intensities of the pixels in the
block if the bit is 1 or decreases the intensities if the bit is 0. So every buyer will
get one marked image which is different for everyone.

1.3 Our Contribution

In this paper, we propose a novel and flexible scheme to fingerprint a relational
database based on the block method for fingerprinting an image as described



A Block Oriented Fingerprinting Scheme in Relational Database 457

above. Compared to the previous works, our scheme has three novel features.
First, it is based on the block method so that the owner can change the size of
the blocks and change the degree of distortion to the database. Secondly, our
scheme has low distortion introduced to the data values without compromising
the integrity (mean and variance) of the data. As will be seen later, our analysis
show that our scheme is resistant to many attacks including collusion attacks.
Third, our scheme can be applied to databases with primary keys and with a
little extension to databases without primary keys.

The scheme we propose is inspired by the method described above, but is
very different from it. Because there exist some fundamental differences between
the characteristics of multimedia data and relational data so that we can not
carry the multimedia techniques over to the realm of relational database. The
differences include:

– It generally does not cause perceptual changes in the object to drop or
replace portions of a multimedia object. However, the pirate of a relation
can frequently delete, insert or replace the database tuples.

– Multimedia objects consist of a large number of bits, with considerable re-
dundancy, thus providing a larger cover to hide information. A database
relation consists of tuples, each of which represents a separate object. The
fingerprint needs to be spread over these separate objects.

– The relative spatial/temporal positions of various pieces of a multimedia
object is often fixed, but it is not the case for the tuples of a relation database.

– There are many psycho-physical phenomena based on the human visual sys-
tem and human auditory system which can be exploited for mark embedding.
However, one can not exploit such phenomena in relational databases.

Due to the differences, our fingerprinting scheme for relational database is only
inspired by the block fingerprinting method for images, and is very different
from it.

The paper is structured as follows. Section 2 describes an effective finger-
printing scheme based on the block method. Section 3 analyzes the security of
the proposed scheme. The conclusion is given in Section 4.

2 An Effective Fingerprinting Scheme

Let’s consider the following scenario. Alice is the owner of a relational database
which is sold to many buyers. Later Alice found that someone owned the database
but she never sold it to him. She needs certain methods to detect who distributed
the database illegally. In this section, we will describe an effective fingerprinting
scheme which can be used to embed a fingerprint into the database and detect it
when necessary. We assume that the relational database has a primary key. The
scheme can be extended for relational databases without primary keys based on
the technique in [3].



458 S. Liu et al.

2.1 Requirements

A fingerprinting scheme should satisfy the following properties.

– Detectability: Alice should be able to detect the fingerprint by examining
limited tuples from a suspicious database. The suspicious database may be
only a small part of the fingerprinted database or a modified version of the
fingerprinted database.

– Imperceptibility: Modifications caused by fingerprinting should not reduce
the usefulness of the database. In addition, commonly used statistical mea-
sures such as mean and variance of the numerical attributes should not be
significantly affected.

– Robustness: A fingerprint scheme should be robust against benign database
operations and malicious attacks that may destroy or modify embedded fin-
gerprints. Benign operations include adding tuples, deleting tuples, and up-
dating tuples in database relations. Malicious attacks include selective modi-
fications of fingerprinted relations, taking subsets of relations, and modifying
or erasing the embedded fingerprint. These common attacks have been iden-
tified in [1,2] and described in the following.

1. Randomization attacks: Certain bits of a fingerprinted database are as-
signed random values so that some fingerprint bits may not be detected.

2. Zero out attacks: Values of some bits of fingerprinted database are
changed to zero which results in that the fingerprint can not be detected
correctly.

3. Bit flipping attacks: Values of some bits of fingerprinted database are
inverted thus the fingerprint can not be detected correctly.

4. Rounding attacks: Some bits of fingerprinted database are deleted due
to the rounding of numerical values so that the fingerprint may not be
detected correctly.

5. Subset attacks: A subset of tuples or attributes of a fingerprinted relation
appear in a pirated database so that the fingerprint can not be detected
correctly.

6. Superset attacks: Some new tuples or attributes are added to a finger-
printed database, which can affect the correct detection of the finger-
print.

7. Additive attacks: Adding an additional fingerprint to a pirated copy thus
to confuse a third party.

8. Invertibility attacks: Discovering a fictitious fingerprint in a relation thus
confusing the owner.

9. Majority attacks: Creating a new relation with the same schema as the
copies but with each bit value computed as the majority function of the
corresponding bit values in all copies so that the owner can not detect
the fingerprint.

10. Mix and match attacks: Creating a pirated copy by combining subsets
of tuples and attributes from each fingerprinted copy so that the owner
can not detect the fingerprint.



A Block Oriented Fingerprinting Scheme in Relational Database 459

The first four types of attacks reduce the accuracy of data. The following
two classes of attacks modify relations but didn’t reduce accuracy. The sev-
enth and eighth types of attacks seek to provide a traitor or pirate with
evidence that raises doubts about a merchant’s claims. The last two types of
attacks are collusion attacks which require attackers to have access to mul-
tiple fingerprinted copies of the same relation but with different embedded
fingerprints.

2.2 Notation and Parameters

Consider a database relation R that has a single primary key attribute P and v
numerical attributes A0, . . . , Av−1. Without loss of generality, let the schema of R
be R(P,A0, . . . , Av−1) and let the database has η tuples. For each attribute value
r.Ai of tuple r ∈ R, one of its ξ(r.Ai) least significant bits could be used to embed
a mark bit. ξ(r.Ai) could depend on the number of bits in a standard binary
representation of r.Ai, or it could be a constant number that is independent on
the value r.Ai. To be simple, we use ξ for ξ(r.Ai) unless otherwise stated.

Let n be the number of users (or buyers) to whom the data is being dis-
tributed. A fingerprint Γ = (f0, . . . , fL−1) is a binary string with length L �
logn. Each user is assigned a unique fingerprint of the same length L. A fin-
gerprint is embedded into each copy of R and the fingerprinted data is then
distributed to the corresponding user.

User i’s fingerprint is computed by a cryptographic hash function H0 whose
input is the concatenation of a secret key K(known by the merchant only) and
user identifier IDi. The output of H0 is a binary string of length L. We shall
assume that this results in a unique fingerprint for each user i = 0, . . . , n − 1.
This is usually the case when L > logn because of the collision-free property of
the hash function. If collisions do exist, we may use a larger L, reserve the user
identifiers that cause collision. We use one pseudo-random producer, which can
be the BBS producer, to produce a series of random numbers, and every user
have one different threshold for the pseudo-random producer. We also use one
cryptographic hash function H1:

H1(K, IDi) = H(K‖H(K‖IDi)) (1)

where H is a standard hash function(e.g., MD5 or SHA), and ‖ denotes concate-
nation. Table 1 gives the notations we use.

2.3 Insertion Stage

At the stage of fingerprint insertion, we first regard the bits of the attributes
that can be used to embed the fingerprint bits as a two-dimension image. For
example, Table 2 gives a small part of a relational database. P is the primary
key, the last three bits of A1 and A2 can be used to embed fingerprint bits.
We first extract the three least significant bits of A1 and A2 and combine them
together as shown in Table 3. Then we divide Table 3 into 6 parts each of size
β × β (here β = 2), as given in Table 4.



460 S. Liu et al.

Table 1. The notions

Notations Meaning

ν The number of attributes in the relational database that can be marked

η The number of tuples in the relational database

ξ The number of the least significant bits that can be used for
marking in an attribute

β The size of every block

n The number of users

Table 2. Part of a relational database

P A1 A2

1 01100011 00001001

2 10000010 00100111

3 01001111 10010001

4 00000000 00000101

Table 3. The bits available for fingerprinting

011001
010111
111001
000101

Table 4. The 6 2 × 2 blocks

01 10 01
01 01 11

11 10 01
00 01 01

Table 5. The insertion algorithm

1. for one buyer
2. produce the fingerprint Γ for the buyer
3. choose one threshold r0 for the pseudo random number generator
4. divide the database attributes bits into blocks of size β × β
5. i=0,j=0
6. for each block Bi

7. r1 =random(r0)
8. x = H1(r1, ID) mod β
9. r2 =random(r1)
10. y = H1(r2, ID) mod β
11. Bi(x, y) = Bi(x, y) ⊕ fj

12. r0 = r2

13. i++,j++ if j==L then j=0
14. end for
15. end for

Now we use the pseudo random generator to produce a random number r,
and according to the result of H1(r, ID) mod β to decide where the fingerprint
bit should be embedded. Table 5 gives the insertion algorithm.



A Block Oriented Fingerprinting Scheme in Relational Database 461

Table 6. The detection algorithm

1. sort S to S′ according to the primary key
2. divide bits in S’ into blocks of size β × β
3. for each buyer, retrieve the corresponding r0:
4. for each block Bi

5. r1 =random(r0)
6. x = H1(r1, ID) mod β
7. r2 =random(r1)
8. y = H(r2, ID) mod β
9. Fi = S′(Bi(x, y)) ⊕ R(Bi(x, y)) if S′(Bi(x, y)) is in S
10. r0 =random(r2)
11. i++
12. end for
13. end for
14. for each buyer, retrieve his fingerprint Γ = (f0, . . . , fL−1)

15. define f ′
i = 1, 0 ≤ i ≤ L − 1, if

#{k| Fi+kL=1,0≤i+kL≤m−1}
ω

� τ , otherwise define f ′
i = 0.

16. if Γ = Γ ′ = (f ′
0, . . . , f

′
L−1), the data is said to had distributed by this buyer.

Line 7 and line 9 use a pseudo random number generator to produce a random
number, respectively. Line 8 and line 10 determine the position in a block the
fingerprint bit should be embedded. Line 13 means that the next fingerprint bit
is ready to be embedded and the next block is ready to be marked. When all the
fingerprint bits have been embedded and the blocks are not over the fingerprint
bits will be embedded again until all the blocks have been used.

2.4 Detection Stage

In the fingerprint detection stage, the merchant first sorts the suspicious database
S according to the primary key. If there are some tuples deleted, they are added
as in the unfingerprinted original data according to the primary key. Then divide
the bits that can be used to embed fingerprint bits into blocks of size β × β
and mark the blocks which are included in R but not in S. Comparison to the
original blocks which don’t contain fingerprint, the merchant decides whether
the suspected relational database is pirated or not. Table 6 gives the fingerprint
detection algorithm.

Line 9 means that for this buyer, the i-th block is detected being marked
with Fi. S(Bi) is the i-th block in the suspicious database and R(Bi) is the
i-th block in the original database. In line 15, m is the number of blocks, ω
times is the number of times a fingerprint has been embedded in the database.
If �τω(τ ∈ [0.5, 1])� detected bits are 1, the detected fingerprint bit is said to be
1, otherwise is said to be 0.

2.5 Fingerprinting Relational Databases Without Primary Keys

The fingerprinting scheme described above is predicated on the assumption that
the relational database have a primary key. And our scheme can be easily ex-



462 S. Liu et al.

tended to be used for relations that are without primary keys based on the
techniques proposed in [3].

3 Robustness

In this section, we analyze the robustness of our fingerprint algorithm against
representative attacks under the assumption that the attackers don’t change
the values of primary keys. In addition, we also investigate false hit rate, the
probability of failing to detect an embedded codeword correctly. Let R be a
fingerprinted relation with the embedded fingerprint Γ = (f0, . . . , fL−1).

3.1 Some Discussion

An important parameter in our scheme is β, which determines the size of the
block. If β is large, the number of blocks reduces and the number of times a
fingerprint being embedded also reduces. But if β is too small, and the number
of buyers is more than the size of the block, the situation will happen that
different buyers’ fingerprint is embedded into the same bit position in the same
block. To avoid the situation, the size of the block should be more than the
number of buyers, meaning that β should be at least more than

√
n. On the

other hand, if β is too big, the fingerprint can be embedded for only a small
number of times, the correctness of the detection may be impaired. The times
that the fingerprint can be embedded can be computed as ω = � ξην

β×β×L�. It is
to say that every fingerprint bit fl is embedded ω times

3.2 Cumulative Binomial Probability

We use Bernoulli trials in our robustness analyze. Repeated independent trails
are called Bernoulli trials if there are only two possible outcomes for each trial
and their probabilities remain the same throughout the trials. Let b(k;n, p) be
the probability and n Bernoulli trials with probabilities p for success and 1 = 1−p
for failure result in k successes and n − k failures. Then

b(k;n, p) =
(

n

k

)
pkqn−k (2)

(
n

k

)
=

n!
k!(n − k)!

(3)

Denote the number of successes in n trials as Sn. The probability of having at
least k successes in n trials, the cumulative binomial probability, can be written
as

P{Sn � k} =
n∑

i=k

b(i;n, p) (4)

For brevity, define

B(k;n, p) =
n∑

i=k

b(i;n, p) (5)



A Block Oriented Fingerprinting Scheme in Relational Database 463

3.3 Bit-Flipping Attacks

In a bit-flipping attack, an attacker selects some bits and toggles their values. In
our scheme, the bit positions used for fingerprinting are computed by a pseudo-
random generator which has a threshold known only to the merchant and a
cryptographic hash function. We assume that the attacker does not know the
threshold so that he has no information about the values or positions of embed-
ded bits. We also assume that the attacker possesses a single fingerprinted copy
of the data. Now, let the attacker examine each bit available for fingerprinting in-
dependently and select it for flipping with probability p. Let q = 1−p. We model
bit flipping as Bernoulli trials with probability p of success and q of failure. Let
the attacker apply the attack to a fingerprinted relation. Consider the probability
pl that one particular fingerprint codeword bit fl is destroyed. Each fingerprint
bit fl is actually embedded ω times as discussed above. For the detection algo-
rithm to fail to recover the correct fingerprint bit, at least (1 − τ)ω embedded
bits that correspond to the fingerprint bit must be changed. It also can be said
that more than ω−�τω�+1 bits must be changed. So pl = B(ω−�τω�+1;ω, p).
The probability that the codeword bit is recovered is ql = 1−pl. Then the prob-
ability that the entire codeword is recovered correctly is

∏
l ql = (1 − pl)L. And

the false hit rate is 1− (1−pl)L. Table 7 describes the probability of a successful
attack for different parameter values. Here we set η = 100000, ξ = 3, ν = 3,
τ = 0.5 and L = 100. We can see that when β is increasing and p is less than
40% the probability for a successful bit-flipping attack is also increasing for the
same p. And when p is more than 40%, the probability is decreasing while β is
increasing. So we can choose the appropriate β. For example, β = 30 is adapt
to the situation when the length of fingerprint is 100 bits. Comparison to the
scheme in [2], there is some development in our scheme on robustness against
bit-flipping attacks.

Table 7. The probability for a successful bit-flipping attack for different block sizes

p = 10% p = 20% p = 30% p = 40% p = 50%

β = 5 0 0 0 0 0
ω = 360 0 0 0 0 0

β = 10 0 5.0610 × 10−9 2.2564 × 10−3 0.8837 1.0000
ω = 90 0 8.3235 × 10−8 1.2954 × 10−2 0.9962 1.0000

β = 15 1.9597 × 10−9 5.0260 × 10−4 0.2151 0.9996 1.0000
ω = 40 1.6237 × 10−7 8.4818 × 10−3 0.7743 0.9999 1.0000

β = 20 2.4620 × 10−5 3.4324 × 10−2 0.7567 0.9999 1.0000
ω = 22 2.0701 × 10−3 0.4599 0.9999 1.0000 1.0000

Table 7 also gives the comparison result on the probability for a successful
bit-flipping attack for different ω based on the scheme in [2]. For every cell, the
first line is the probability for our scheme and the second line is the probability
for the scheme in [2].



464 S. Liu et al.

3.4 Subset Attacks

Consider a subset attack where the pirated data is a subset of tuples of a finger-
printed relation. Note that a relation has η tuples and that an attacker examines
each tuple independently and selects it with probability q′ for inclusion in the
pirated relation. The pirated relation will thus have ζ = q′η tuples on average.
The probability that a tuple is deleted is p′ = 1 − q′. Suppose that a subset
attack is applied to a fingerprinted relation and that there is no other attack or
benign update on the data. Then, for the attack to be successful, it must delete
at least �ω − τω� embedded bits for some codeword bit. Now, each codeword
bit fl is embedded ω times in the original relation, so the probability µl that a
codeword bit fl is erased completely is µl = B(�ω−τω�;ω, p′). Then, vl = 1−µl

is the probability that a codeword bit fl is detected,
∏

l vl is the probability that
the entire codeword is detected correctly, and 1 − ∏

l vl is the false miss rate.
Table 8 shows the probability of a successful attack for different parameter

values. Here we set η = 100000, ξ = 3, ν = 3, τ = 0.5 and L = 100. We can see
that when β is increasing the probability for a successful subset attack is also
increasing for the same p′. So we can change β to adapt to different needs.

Table 8. The probability for a successful subset attack for different block sizes

p′ = 10% p′ = 20% p′ = 30% p′ = 40% p′ = 50%

β = 5 0 0 0 0 0

β = 10 0 2.09722 × 10−8 5.5264 × 10−3 0.9706 1.0000

β = 15 1.8719 × 10−8 2.1669 × 10−3 0.4660 0.9999 1.0000

β = 20 2.4596 × 10−4 0.1471 0.9808 0.9999 1.0000

3.5 Attribute Attacks

If an attacker adds one new attribute into a fingerprinted relation. Because our
detection algorithm first reassorts the suspected relation, the new attribute can
be omitted.

If an attacker delete some attributes from a fingerprinted relation, tuples
in which the deleted attributes were marked can be regarded as deleted. The
situation can be analyzed as tuple deletion described in section 3.4.

If an attacker modifies some attributes from a fingerprinted relation, the
situation can be analyzed as the bit-flipping attacks.

3.6 Collusion Attacks

Fingerprinting schemes are susceptible to collusion attacks by coalitions with ac-
cess to multiple fingerprinted copies of the relation but with different embedded
fingerprints. The attackers can create a useful data copy that does not implicate
anyone of the attackers. During fingerprint detection, the copy may yield the
fingerprint of an innocent buyer, or it may not yield a valid fingerprint at all.



A Block Oriented Fingerprinting Scheme in Relational Database 465

There are many solutions to the collusion problem, a well-known of which was
proposed by Boneh and Shaw [5], and many others have been proposed such as
[6]. These solutions focus on the choice of codewords used by a fingerprinting
scheme. They show that by a proper choice of codewords, fingerprinting schemes
can be made collusion secure. Most of the solutions need the fingerprinting sat-
isfy two properties, one is that an attacker can only detect that a bit position
was used during fingerprint insertion if the attacker has data copies that differ in
value at that position and the other is that although an attacker may determine
that a particular data bit was used to embed some codeword bit, the attacker
cannot determine which codeword bit it represents. The fingerprinting schemes
described in the paper satisfy these properties because the positions the code-
word is embedded are hidden using a pseudo random function. And because β
is known to the owner, the attacker do not know the relationship between the
embedded bits and the codeword bits. On the other hand, different buyers’ code-
words are embedded in different locations, which also increase the difficulties an
attacker can destroy the fingerprint. Thus, we can use any of those collusion-
secure codeword schemes by replacing the hash function H0 in the fingerprinting
algorithms. This has been demonstrated in [2] using an adapted version of Boneh
and Shaw’s algorithm. It’s the same for our schemes.

3.7 Additive Attacks

In an additive attack, an attacker may insert another mark before distributing
a pirated database. A traitor may insert a watermark to claim ownership of the
database and he may insert a fingerprint to claim that the database was provided
to a user legitimately. This type of attack is discussed in [1] in the context
of watermarking, the solution they propose is applicable to our fingerprinting
schemes as well.

3.8 Distortion to Integrity and Consistency

In our scheme, the bits ready for embedding fingerprint bits are the least signif-
icant bits of the candidate attributes. The bits are randomly chosen for embed-
ding fingerprint bits, which means that it is impossible for the bits are mostly
embedded in only one or few attributes. So the changes of the mean and variance
of the candidate attributes are almost imperceptive, which ensure the integrity
and consistency of the relation.

4 Conclusion

In this paper, we have presented the scheme for embedding and detecting fin-
gerprints in relational databases based on a block method. In addition, we have
presented security analysis to show the robustness of our technique against var-
ious attacks.

For future work, we would like to optimize the detection process and inves-
tigate the possibility of extending our embedding scheme for both non-numeric
and numeric attributes.



466 S. Liu et al.

References

1. R.Agrawal and J.Kiernan. Watermarking relational databases. Proc. 28th Interna-
tional Conference on Very Large Data Bases (VLDB 2002), 2002.

2. Y.Li, V.Swarup, S.Jajodia. Fingerprint relational databases. Technical report, Cen-
ter for secure Information Systems, George Mason University, Fairfax, VA, May
2003.

3. Yingjiu Li, Vipin Swarup, Sushil Jajodia. Construting a virtual primary key for
fingerprinting relational data. DRM 03.

4. Tanmoy Kanti Das, Subhamoy Maitra. A robust block oriented watermarking
scheme in spatial domain. 4the International Conference(ICICS 2002),2002.

5. D.Boneth and J.Shaw. Collusion secure fingerprint for digital data. IEEE Trans-
actions on Information Theory, 44(5):1897-1905,1998.

6. H. Guth and B. Pfitzmannn. Error and collusion secure fingerprinting for digital
data. In Information Hiding ’99, LnCS 1768, Springer-Verlag, pages 134-145,2000.

7. R.Sion, M.Atallah, and S. Prabhakar. On watermarking numeric datasets. In Proc.
First International Workshop on Digital Watermarking(IWDW 2002), 2002.

8. R.Sion, M.Atallah, and S. Prabhakar. Rights protection for relational data. In Proc.
ACM International Coference on Management of Data(SIGMOD 2003), 2002.

9. E.Bertino, S. Jajodia, and P. Samarati. A flexible authorization merchanism for
relational data management systems. ACM Transactions on Information Systems,
17(2):101-140, 1999.

10. D. Gross-Amblard. Query-preserving watermarking of relational databases and
xml documents. In Proc. of the Twenty-second ACM SIGMOD-SIGACT-SIGART
Symposium on Pringciples of Database Systems(PODS 2003), 2003.

11. S. Katzenbeisser and E.F. Petitcolas. Information Hiding Techniques for Steganog-
raphy and Watermarrking. Artech House, Boston MA, 2000.

12. S. Khanna and F.Zane. Watermarking maps: hiding information in structured data.
In Proc. Symposium on Discrete Algorithms(SPDA),2000.

13. W. Stallings. Cryptographic Techniques and Data Security. Third Edition. Prentice
Hall, 2002.


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2005

	A Block Oriented Fingerprinting Scheme in Relational Database
	Siyuan LIU
	Shuhong WANG
	Robert H. DENG
	Weizhong SHAO
	Citation


	Introduction
	Background
	Related Work
	Our Contribution

	An Effective Fingerprinting Scheme
	Requirements
	Notation and Parameters
	Insertion Stage
	Detection Stage
	Fingerprinting Relational Databases Without Primary Keys

	Robustness
	Some Discussion
	Cumulative Binomial Probability
	Bit-Flipping Attacks
	Subset Attacks
	Attribute Attacks
	Collusion Attacks
	Additive Attacks
	Distortion to Integrity and Consistency

	Conclusion

