22 research outputs found

    Defining Treatment‐Related Adverse Effects in Patients with Glioma: Distinctive Features of Pseudoprogression and Treatment‐Induced Necrosis

    Get PDF
    Background: Pseudoprogression (PP) and treatment‐induced brain tissue necrosis (TN) are challenging cancer treatment–related effects. Both phenomena remain insufficiently defined; differentiation from recurrent disease frequently necessitates tissue biopsy. We here characterize distinctive features of PP and TN to facilitate noninvasive diagnosis and clinical management. Materials and Methods: Patients with glioma and confirmed PP (defined as appearance 5 months after RT) were retrospectively compared using clinical, radiographic, and histopathological data. Each imaging event/lesion (region of interest [ROI]) diagnosed as PP or TN was longitudinally evaluated by serial imaging. Results: We identified 64 cases of mostly (80%) biopsy‐confirmed PP (n = 27) and TN (n = 37), comprising 137 ROIs in total. Median time of onset for PP and TN was 1 and 11 months after RT, respectively. Clinically, PP occurred more frequently during active antineoplastic treatment, necessitated more steroid‐based interventions, and was associated with glioblastoma (81 vs. 40%), fewer IDH1 mutations, and shorter median overall survival. Radiographically, TN lesions often initially manifested periventricularly (n = 22/37; 60%), were more numerous (median, 2 vs. 1 ROIs), and contained fewer malignant elements upon biopsy. By contrast, PP predominantly developed around the tumor resection cavity as a non‐nodular, ring‐like enhancing structure. Both PP and TN lesions almost exclusively developed in the main prior radiation field. Presence of either condition appeared to be associated with above‐average overall survival. Conclusion: PP and TN occur in clinically distinct patient populations and exhibit differences in spatial radiographic pattern. Increased familiarity with both conditions and their unique features will improve patient management and may avoid unnecessary surgical procedures. Implications for Practice: Pseudoprogression (PP) and treatment‐induced brain tissue necrosis (TN) are challenging treatment‐related effects mimicking tumor progression in patients with brain cancer. Affected patients frequently require surgery to guide management. PP and TN remain arbitrarily defined and insufficiently characterized. Lack of clear diagnostic criteria compromises treatment and may adversely affect outcome interpretation in clinical trials. The present findings in a cohort of patients with glioma with PP/TN suggest that both phenomena exhibit unique clinical and imaging characteristics, manifest in different patient populations, and should be classified as distinct clinical conditions. Increased familiarity with PP and TN key features may guide clinicians toward timely noninvasive diagnosis, circumvent potentially unnecessary surgical procedures, and improve response assessment in neuro‐oncology

    Receptor autoantibodies: Associations with cardiac markers, histology, and function in human non-ischaemic heart failure

    Get PDF
    AIMS: A causal link between non-ischaemic heart failure (HF) and humoral autoimmunity against G-protein-coupled receptors (GPCR) remains unclear except for Chagas' cardiomyopathy. Uncertainty arises from ambiguous reports on incidences of GPCR autoantibodies, spurious correlations of autoantibody levels with disease activity, and lack of standardization and validation of measuring procedures for putatively cardio-pathogenic GPCR autoantibodies. Here, we use validated and certified immune assays presenting native receptors as binding targets. We compared candidate GPCR autoantibody species between HF patients and healthy controls and tested associations of serum autoantibody levels with serological, haemodynamic, metabolic, and functional parameters in HF. METHODS: Ninety-five non-ischaemic HF patients undergoing transcatheter endomyocardial biopsy and 60 healthy controls were included. GPCR autoantibodies were determined in serum by IgG binding to native receptors or a cyclic peptide (for ß1AR autoantibodies). In patients, cardiac function, volumes, and myocardial structural properties were assessed by cardiac magnetic resonance imaging; right heart catheterization served for determination of cardiac haemodynamics; endomyocardial biopsies were used for histological assessment of cardiomyopathy and determination of cardiac mitochondrial oxidative function by high-resolution respirometry. RESULTS: Autoantibodies against ß(1) adrenergic (ß(1) AR), M5-muscarinic (M5AR), and angiotensin II type 2 receptors (AT2R) were increased in HF (all P < 0.001). Autoantibodies against a(1) -adrenergic (a(1) AR) and angiotensin II type 1 receptors (AT1R) were decreased in HF (all P < 0.001). Correlation of alterations of GPCR autoantibodies with markers of cardiac or systemic inflammation or cardiac damage, haemodynamics, myocardial histology, or left ventricular inflammation (judged by T2 mapping) were weak, even when corrected for total IgG. ß(1) AR autoantibodies were related inversely to markers of left ventricular fibrosis indicated by T1 mapping (r = -0.362, P < 0.05) and global longitudinal strain (r = -0.323, P < 0.05). AT2R autoantibodies were associated with improved myocardial mitochondrial coupling as measured by high-resolution respirometry in myocardial biopsies (r = -0.352, P < 0.05). In insulin-resistant HF patients, AT2R autoantibodies were decreased (r = -.240, P < 0.05), and AT1R autoantibodies were increased (r = 0.212, P < 0.05). CONCLUSIONS: GPCR autoantibodies are markedly altered in HF. However, they are correlated poorly or even inversely to haemodynamic, metabolic, and functional markers of disease severity, myocardial histology, and myocardial mitochondrial efficiency. These observations do not hint towards a specific cardio-pathogenic role of GPCR autoantibodies and suggest that further investigations are required before specific therapies directed at GPCR autoantibodies can be clinically tested in non-ischaemic HF

    Surgical management and outcome of newly diagnosed glioblastoma without contrast enhancement (<i>low-grade appearance</i>):a report of the RANO <i>resect </i>group

    Get PDF
    BackgroundResection of the contrast-enhancing (CE) tumor represents the standard of care in newly diagnosed glioblastoma. However, some tumors ultimately diagnosed as glioblastoma lack contrast enhancement and have a ‘low-grade appearance’ on imaging (non-CE glioblastoma). We aimed to (a) volumetrically define the value of non-CE tumor resection in the absence of contrast enhancement, and to (b) delineate outcome differences between glioblastoma patients with and without contrast enhancement.MethodsThe RANO resect group retrospectively compiled a global, eight-center cohort of patients with newly diagnosed glioblastoma per WHO 2021 classification. The associations between postoperative tumor volumes and outcome were analyzed. Propensity score-matched analyses were constructed to compare glioblastomas with and without contrast enhancement.ResultsAmong 1323 newly diagnosed IDH-wildtype glioblastomas, we identified 98 patients (7.4%) without contrast enhancement. In such patients, smaller postoperative tumor volumes were associated with more favorable outcome. There was an exponential increase in risk for death with larger residual non-CE tumor. Accordingly, extensive resection was associated with improved survival compared to lesion biopsy. These findings were retained on a multivariable analysis adjusting for demographic and clinical markers. Compared to CE glioblastoma, patients with non-CE glioblastoma had a more favorable clinical profile and superior outcome as confirmed in propensity score analyses by matching the patients with non-CE glioblastoma to patients with CE glioblastoma using a large set of clinical variables.ConclusionsThe absence of contrast enhancement characterizes a less aggressive clinical phenotype of IDH-wildtype glioblastomas. Maximal resection of non-CE tumors has prognostic implications and translates into favorable outcome

    Severe hematotoxicity after CD19 CAR-T therapy is associated with suppressive immune dysregulation and limited CAR-T expansion

    Get PDF
    Prolonged cytopenias after chimeric antigen receptor (CAR) T cell therapy are a significant clinical problem and the underlying pathophysiology remains poorly understood. Here, we investigated how (CAR) T cell expansion dynamics and serum proteomics affect neutrophil recovery phenotypes after CD19-directed CAR T cell therapy. Survival favored patients with "intermittent" neutrophil recovery (e.g., recurrent neutrophil dips) compared to either "quick" or "aplastic" recovery. While intermittent patients displayed increased CAR T cell expansion, aplastic patients exhibited an unfavorable relationship between expansion and tumor burden. Proteomics of patient serum collected at baseline and in the first month after CAR-T therapy revealed higher markers of endothelial dysfunction, inflammatory cytokines, macrophage activation, and T cell suppression in the aplastic phenotype group. Prolonged neutrophil aplasia thus occurs in patients with systemic immune dysregulation at baseline with subsequently impaired CAR-T expansion and myeloid-related inflammatory changes. The association between neutrophil recovery and survival outcomes highlights critical interactions between host hematopoiesis and the immune state stimulated by CAR-T infusion

    Orale Kontrazeption und Lipoidstoffwechsel

    No full text

    Das Verhalten des Serumcoeruloplasmins unter oralen Kontrazeptiva

    No full text

    Antiandrogene

    No full text
    corecore