2,949 research outputs found
Effects of cobalt in nickel-base superalloys
The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys
Integrated Optics: a Report on the 2nd OSA Topical Meeting
This report surveys the papers presented at the 2nd OSA Topical Meeting on Integrated Optics, which was held 21–24 January 1974 in New Orleans, La
Regeneration of photon echoes with amplified photon echoes
Photon-echo-based devices have been proposed for many applications in data storage, image processing, and optical communications. Many of these applications would benefit if the output from the photon-echo process could be used as input in a second photon-echo process. We demonstrate the generation of such secondary echoes, using the amplified output from an initial photon-echo process. The amplification is performed with a Pr:ZBLAN fiber amplifier, which gives a gain of more than 300 at 606 nm when pumped with 320 mW of power at 476 nm
Small coherence peak near in unconventional superconductors
It is usually believed that a coherence peak just below T in the
nuclear spin lattice relaxation rate T in superconducting materials
is a signature of conventional s-wave pairing. In this paper we demonstrate
that any unconventional superconductor obeying BCS pure-case weak-coupling
theory should show a small T coherence peak near T, generally
with a height between 3 and 15 percent greater than the normal state
T at T. It is largely due to impurity effects that this peak
has not commonly been observed.Comment: 4 pages, 5 figure
Exploring Millions of 6-State FSSP Solutions: the Formal Notion of Local CA Simulation
In this paper, we come back on the notion of local simulation allowing to
transform a cellular automaton into a closely related one with different local
encoding of information. This notion is used to explore solutions of the Firing
Squad Synchronization Problem that are minimal both in time (2n -- 2 for n
cells) and, up to current knowledge, also in states (6 states). While only one
such solution was proposed by Mazoyer since 1987, 718 new solutions have been
generated by Clergue, Verel and Formenti in 2018 with a cluster of machines. We
show here that, starting from existing solutions, it is possible to generate
millions of such solutions using local simulations using a single common
personal computer
Transport and Boundary Scattering in Confined Geometries: Analytical Results
We utilize a geometric argument to determine the effects of boundary
scattering on the carrier mean-free path in samples of various cross sections.
Analytic expressions for samples with rectangular and circular cross sections
are obtained. We also outline a method for incorporating these results into
calculations of the thermal conductivity.Comment: 35 pages, Late
High-temperature oxidation of nickel-based alloys and estimation of the adhesion strength of resulting oxide layers
The kinetics of isothermal oxidation (1100°C) of commercial nickel-based alloys with different content of sulfur (0.22–3.2 wt ppm) is studied. The adhesion strength in a metal/oxide system is estimated as a function of sulfur content and duration of high-temperature exposure. The scratch-test technique is proposed to quantitatively estimate the work of adhesion of resulting oxide films. It is found that the film microstructure is composed of an inner α-Al2O3 layer and an outer NiAl2O4 spinel layer, which are separated by discrete inclusions of TiO2. Residual stresses in the oxide film are experimentally determined by X-ray diffraction. spinel layer, which are separated by discrete inclusions of TiO2. Residual stresses in the oxide film are experimentally determined by X-ray diffractio
Inferring periodic orbits from spectra of simple shaped micro-lasers
Dielectric micro-cavities are widely used as laser resonators and
characterizations of their spectra are of interest for various applications. We
experimentally investigate micro-lasers of simple shapes (Fabry-Perot, square,
pentagon, and disk). Their lasing spectra consist mainly of almost equidistant
peaks and the distance between peaks reveals the length of a quantized periodic
orbit. To measure this length with a good precision, it is necessary to take
into account different sources of refractive index dispersion. Our experimental
and numerical results agree with the superscar model describing the formation
of long-lived states in polygonal cavities. The limitations of the
two-dimensional approximation are briefly discussed in connection with
micro-disks.Comment: 13 pages, 19 figures, accepted for publication in Physical Review
Dielectric multilayer waveguides for TE and TM mode matching
We analyse theoretically for the first time to our knowledge the perfect
phase matching of guided TE and TM modes with a multilayer waveguide composed
of linear isotropic dielectric materials. Alongside strict investigation into
dispersion relations for multilayer systems, we give an explicit qualitative
explanation for the phenomenon of mode matching on the basis of the standard
one-dimensional homogenization technique, and discuss the minimum number of
layers and the refractive index profile for the proposed device scheme. Direct
applications of the scheme include polarization-insensitive, intermodal
dispersion-free planar propagation, efficient fibre-to-planar waveguide
coupling and, potentially, mode filtering. As a self-sufficient result, we
present compact analytical expressions for the mode dispersion in a finite,
N-period, three-layer dielectric superlattice.Comment: 13 pages with figure
Nonlinear Response of a Kondo system: Direct and Alternating Tunneling Currents
Non - equilibrium tunneling current of an Anderson impurity system subject to
both constant and alternating electric fields is studied. A time - dependent
Schrieffer - Wolff transformation maps the time - dependent Anderson
Hamiltonian onto a Kondo one. Perturbation expansion in powers of the Kondo
coupling strength is carried out up to third order, yielding a remarkably
simple analytical expression for the tunneling current. It is found that the
zero - bias anomaly is suppressed by an ac - field. Both dc and the first
harmonic are equally enhanced by the Kondo effect, while the higher harmonics
are relatively small. These results are shown to be valid also below the Kondo
temperature.Comment: 7 pages, RevTeX, 3 PS figures attached, the article has been
significantly developed: time - dependent Schrieffer - Wolff transformation
is presented in the full form, the results are applied to the change in the
direct current induced by an alternating field (2 figures are new
- …