2,949 research outputs found

    Effects of cobalt in nickel-base superalloys

    Get PDF
    The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys

    Integrated Optics: a Report on the 2nd OSA Topical Meeting

    Get PDF
    This report surveys the papers presented at the 2nd OSA Topical Meeting on Integrated Optics, which was held 21–24 January 1974 in New Orleans, La

    Regeneration of photon echoes with amplified photon echoes

    Get PDF
    Photon-echo-based devices have been proposed for many applications in data storage, image processing, and optical communications. Many of these applications would benefit if the output from the photon-echo process could be used as input in a second photon-echo process. We demonstrate the generation of such secondary echoes, using the amplified output from an initial photon-echo process. The amplification is performed with a Pr:ZBLAN fiber amplifier, which gives a gain of more than 300 at 606 nm when pumped with 320 mW of power at 476 nm

    Small T1−1T_1^{-1} coherence peak near TcT_c in unconventional superconductors

    Full text link
    It is usually believed that a coherence peak just below Tc_{c} in the nuclear spin lattice relaxation rate T1−1_{1}^{-1} in superconducting materials is a signature of conventional s-wave pairing. In this paper we demonstrate that any unconventional superconductor obeying BCS pure-case weak-coupling theory should show a small T1−1_{1}^{-1} coherence peak near Tc_{c}, generally with a height between 3 and 15 percent greater than the normal state T1−1_{1}^{-1} at Tc_{c}. It is largely due to impurity effects that this peak has not commonly been observed.Comment: 4 pages, 5 figure

    Exploring Millions of 6-State FSSP Solutions: the Formal Notion of Local CA Simulation

    Full text link
    In this paper, we come back on the notion of local simulation allowing to transform a cellular automaton into a closely related one with different local encoding of information. This notion is used to explore solutions of the Firing Squad Synchronization Problem that are minimal both in time (2n -- 2 for n cells) and, up to current knowledge, also in states (6 states). While only one such solution was proposed by Mazoyer since 1987, 718 new solutions have been generated by Clergue, Verel and Formenti in 2018 with a cluster of machines. We show here that, starting from existing solutions, it is possible to generate millions of such solutions using local simulations using a single common personal computer

    Transport and Boundary Scattering in Confined Geometries: Analytical Results

    Full text link
    We utilize a geometric argument to determine the effects of boundary scattering on the carrier mean-free path in samples of various cross sections. Analytic expressions for samples with rectangular and circular cross sections are obtained. We also outline a method for incorporating these results into calculations of the thermal conductivity.Comment: 35 pages, Late

    High-temperature oxidation of nickel-based alloys and estimation of the adhesion strength of resulting oxide layers

    Get PDF
    The kinetics of isothermal oxidation (1100°C) of commercial nickel-based alloys with different content of sulfur (0.22–3.2 wt ppm) is studied. The adhesion strength in a metal/oxide system is estimated as a function of sulfur content and duration of high-temperature exposure. The scratch-test technique is proposed to quantitatively estimate the work of adhesion of resulting oxide films. It is found that the film microstructure is composed of an inner α-Al2O3 layer and an outer NiAl2O4 spinel layer, which are separated by discrete inclusions of TiO2. Residual stresses in the oxide film are experimentally determined by X-ray diffraction. spinel layer, which are separated by discrete inclusions of TiO2. Residual stresses in the oxide film are experimentally determined by X-ray diffractio

    Inferring periodic orbits from spectra of simple shaped micro-lasers

    Get PDF
    Dielectric micro-cavities are widely used as laser resonators and characterizations of their spectra are of interest for various applications. We experimentally investigate micro-lasers of simple shapes (Fabry-Perot, square, pentagon, and disk). Their lasing spectra consist mainly of almost equidistant peaks and the distance between peaks reveals the length of a quantized periodic orbit. To measure this length with a good precision, it is necessary to take into account different sources of refractive index dispersion. Our experimental and numerical results agree with the superscar model describing the formation of long-lived states in polygonal cavities. The limitations of the two-dimensional approximation are briefly discussed in connection with micro-disks.Comment: 13 pages, 19 figures, accepted for publication in Physical Review

    Dielectric multilayer waveguides for TE and TM mode matching

    Full text link
    We analyse theoretically for the first time to our knowledge the perfect phase matching of guided TE and TM modes with a multilayer waveguide composed of linear isotropic dielectric materials. Alongside strict investigation into dispersion relations for multilayer systems, we give an explicit qualitative explanation for the phenomenon of mode matching on the basis of the standard one-dimensional homogenization technique, and discuss the minimum number of layers and the refractive index profile for the proposed device scheme. Direct applications of the scheme include polarization-insensitive, intermodal dispersion-free planar propagation, efficient fibre-to-planar waveguide coupling and, potentially, mode filtering. As a self-sufficient result, we present compact analytical expressions for the mode dispersion in a finite, N-period, three-layer dielectric superlattice.Comment: 13 pages with figure

    Nonlinear Response of a Kondo system: Direct and Alternating Tunneling Currents

    Full text link
    Non - equilibrium tunneling current of an Anderson impurity system subject to both constant and alternating electric fields is studied. A time - dependent Schrieffer - Wolff transformation maps the time - dependent Anderson Hamiltonian onto a Kondo one. Perturbation expansion in powers of the Kondo coupling strength is carried out up to third order, yielding a remarkably simple analytical expression for the tunneling current. It is found that the zero - bias anomaly is suppressed by an ac - field. Both dc and the first harmonic are equally enhanced by the Kondo effect, while the higher harmonics are relatively small. These results are shown to be valid also below the Kondo temperature.Comment: 7 pages, RevTeX, 3 PS figures attached, the article has been significantly developed: time - dependent Schrieffer - Wolff transformation is presented in the full form, the results are applied to the change in the direct current induced by an alternating field (2 figures are new
    • …
    corecore