1,400 research outputs found

    Realization of a Resonant Fermi Gas with a Large Effective Range

    Full text link
    We have measured the interaction energy and three-body recombination rate for a two-component Fermi gas near a narrow Feshbach resonance and found both to be strongly energy dependent. Even for deBroglie wavelengths greatly exceeding the van der Waals length scale, the behavior of the interaction energy as a function of temperature cannot be described by atoms interacting via a contact potential. Rather, energy-dependent corrections beyond the scattering length approximation are required, indicating a resonance with an anomalously large effective range. For fields where the molecular state is above threshold, the rate of three-body recombination is enhanced by a sharp, two-body resonance arising from the closed-channel molecular state which can be magnetically tuned through the continuum. This narrow resonance can be used to study strongly correlated Fermi gases that simultaneously have a sizeable effective range and a large scattering length.Comment: to appear in Phys. Rev. Let

    All-Optical Production of a Degenerate Fermi Gas

    Full text link
    We achieve degeneracy in a mixture of the two lowest hyperfine states of 6^6Li by direct evaporation in a CO2_2 laser trap, yielding the first all-optically produced degenerate Fermi gas. More than 10510^5 atoms are confined at temperatures below 4μ4 \muK at full trap depth, where the Fermi temperature for each state is 8μ8 \muK. This degenerate two-component mixture is ideal for exploring mechanisms of superconductivity ranging from Cooper pairing to Bose condensation of strongly bound pairs.Comment: 4 pgs RevTeX with 2 eps figs, to be published in Phys. Rev. Let

    Dealing with mobility: Understanding access anytime, anywhere

    Get PDF
    The rapid and accelerating move towards the adoption and use of mobile technologies has increasingly provided people and organisations with the ability to work away from the office and on the move. The new ways of working afforded by these technologies are often characterised in terms of access to information and people ‘anytime, anywhere’. This paper presents a study of mobile workers that highlights different facets of access to remote people and information, and different facets of anytime, anywhere. Four key factors in mobile work are identified from the study: the role of planning, working in ‘dead time’, accessing remote technological and informational resources, and monitoring the activities of remote colleagues. By reflecting on these issues, we can better understand the role of technology and artefact use in mobile work and identify the opportunities for the development of appropriate technological solutions to support mobile workers

    Are Habitual Hydration Strategies of Female Rugby League Players Sufficient to Maintain Fluid Balance and Blood Sodium Concentration During Training and Match-Play? A Research Note From the Field.

    Get PDF
    Limited data exists on the hydration status of female athletes, with no data available on female rugby players. The objective of this study was to investigate the habitual hydration status on arrival, sweat loss, fluid intake, sweat Na loss and blood [Na] during field training and match-play in ten international female rugby league players. Urine osmolality on arrival to match-play (382 ± 302 mOsmol·kg) and training (667 ± 260 mOsmol·kg) was indicative of euhydration. Players experienced a body mass loss of 0.50 ± 0.45 and 0.56 ± 0.53% during match-play and training respectively. During match-play players consumed 1.21 ± 0.43 kg of fluid and had a sweat loss of 1.54 ± 0.48 kg. During training players consumed 1.07 ± 0.90 kg of fluid, in comparison to 1.25 ± 0.83 kg of sweat loss. Blood [Na] was well regulated ([INCREMENT]-0.7 ± 3.4 and [INCREMENT]-0.4 ± 2.6 mmol·L) despite sweat [Na] of 47.8 ± 5.7 and 47.2 ± 6.3 mmol·L during match-play and training. The findings of this study show mean blood [Na] appears to be well regulated despite losses of Na in sweat and electrolyte free fluid consumption. For the duration of the study players did not experience a body mass loss (dehydration >2%) indicative of a reduction in exercise performance, thus habitual hydration strategies appear adequate. Practitioners should evaluation the habitual hydration status of athletes to determine if interventions above habitual strategies are warranted

    Future policy implications of tidal energy array interactions

    Get PDF
    Tidal stream energy technology has progressed to a point where commercial exploitation of this sustainable resource is practical, but tidal physics dictates interactions between tidal farms that raise political, legal and managerial challenges that are yet to be met. Fully optimising the design of a turbine array requires its developer to know about other farms that will be built nearby in the future. Consequently future developments, even those in adjacent channels, have the potential to impact on project efficiency. Here we review the relevant physics, consider the implications for marine policy, and discuss potential solutions. Possible management paths range from minimal regulation to prioritise a free market, to strongly interventionist approaches that prioritise efficient resource use. An attractive exemplar of the latter is unitization, an approach to resource allocation widely used in the oil and gas industry. We argue that an interventionist approach is necessary if the greatest possible energy yield is to be produced for a given level of environmental impact
    corecore