27,828 research outputs found

    Solar array strip and a method for forming the same

    Get PDF
    A flexible solar array strip is formed by providing printed circuitry between flexible layers of a nonconductive material, depositing solder pads on the printed circuitry, and storing the resulting substrate on a drum from which it is then withdrawn and advanced along a linear path. Solderless solar cells are serially transported into engagement with the pads and are infrared radiation to melt the solder and attach the cells to the circuitry. Excess flux is cleaned from the solar cells which are then encapsulated in a protective coating. The resulting array is then wound on a drum

    Method for forming a solar array strip

    Get PDF
    A flexible solar array strip is formed by a method which lends itself to automatic production techniques. Solder pads are deposited on printed circuitry deposited on a flexible structure. The resultant substrate is stored on a drum from which it is withdrawn and incrementally advanced along a linear path. Solderless solar cells are serially transported into engagement with the pads which are then heated in order to attach the cells to the circuitry. Excess flux is cleaned from the cells which are encapsulated in a protective coating. The resultant array is then spirally wound on a drum

    Stirring trapped atoms into fractional quantum Hall puddles

    Full text link
    We theoretically explore the generation of few-body analogs of fractional quantum Hall states. We consider an array of identical few-atom clusters (n=2,3,4), each cluster trapped at the node of an optical lattice. By temporally varying the amplitude and phase of the trapping lasers, one can introduce a rotating deformation at each site. We analyze protocols for coherently transferring ground state clusters into highly correlated states, producing theoretical fidelities in excess of 99%.Comment: 4 pages, 3 figures (13 subfigures) -- v2: published versio

    Bonding machine for forming a solar array strip

    Get PDF
    A machine is described for attaching solar cells to a flexable substrate on which printed circuitry has been deposited. The strip is fed through: (1) a station in which solar cells are elevated into engagement with solder pads for the printed circuitry and thereafter heated by an infrared lamp; (2) a station at which flux and solder residue is removed; (3) a station at which electrical performance of the soldered cells is determined; (4) a station at which an encapsulating resin is deposited on the cells; (5) a station at which the encapsulated solar cells are examined for electrical performance; and (6) a final station at which the resulting array is wound on a takeup drum

    Natural linewidth analysis of d-band photoemission from Ag(110)

    Full text link
    We report a high-resolution angle-resolved study of photoemission linewidths observed for Ag(110). A careful data analysis yields kresolvedupperlimitsfortheinverseinelasticlifetimesof-resolved upper limits for the inverse inelastic lifetimes of dholesattheXpointofthebulkbandstructure.Attheupper-holes at the X-point of the bulk band structure. At the upper dbandedgetheholelifetimeis-band edge the hole-lifetime is \tau_h \geq 22 fs,i.e.morethanoneorderofmagnitudelargerthanpredictedforafreeelectrongas.Followingcalculationsforfs, i.e. more than one order of magnitude larger than predicted for a free-electron gas. Following calculations for d$-hole dynamics in Cu (I.\ Campillo et al., Phys. Rev. Lett., in press) we interpret the lifetime enhancement by a small scattering cross-section of dd- and spsp-states below the Fermi level. With increasing distance to EFE_F the dd-hole lifetimes get shorter because of the rapidly increasing density of d-states and contributions of intra-dd-band scattering processes, but remain clearly above free-electron-model predictions.Comment: 14 pages, 7 figure

    Differential regulation of Ota and Otb, two primary glycine betaine transporters in the methanogenic archaeon Methanosarcina mazei go1

    Get PDF
    Methanogenic archaea accumulate glycine betaine in response to hypersalinity, but the regulation of proteins involved, their mechanism of activation and regulation of the corresponding genes are largely unknown. Methanosarcina mazei differs from most other methanoarchaea in having two gene clusters both encoding a potential glycine betaine transporter, Ota and Otb. Western blot as well as quantitative real-time PCR revealed that Otb is not regulated by osmolarity. On the other hand, cellular levels of Ota increased with increasing salt concentrations. A maximum was reached at 300-500 m M NaCl. Ota concentrations reached a maximum 4 h after an osmotic upshock. Hyperosmolarity also caused an increase in cellular Ota concentrations. In addition to osmolarity Ota expression was regulated by the growth phase. Expression of Ota as well as transport of betaine was downregulated in the presence of glycine betaine. Copyright (c) 2007 S. Karger AG, Basel

    Classifying LEP Data with Support Vector Algorithms

    Get PDF
    We have studied the application of different classification algorithms in the analysis of simulated high energy physics data. Whereas Neural Network algorithms have become a standard tool for data analysis, the performance of other classifiers such as Support Vector Machines has not yet been tested in this environment. We chose two different problems to compare the performance of a Support Vector Machine and a Neural Net trained with back-propagation: tagging events of the type e+e- -> ccbar and the identification of muons produced in multihadronic e+e- annihilation events.Comment: 7 pages, 4 figures, submitted to proceedings of AIHENP99, Crete, April 199

    Polaron Coherence as Origin of the Pseudogap Phase in High Temperature Superconducting Cuprates

    Get PDF
    Within a two component approach to high Tc copper oxides including polaronic couplings, we identify the pseudogap phase as the onset of polaron ordering. This ordering persists in the superconducting phase. A huge isotope effect on the pseudogap onset temperature is predicted and in agreement with experimental data. The anomalous temperature dependence of the mean square copper oxygen ion displacement observed above, at and below Tc stems from an s-wave superconducting component of the order parameter, whereas a pure d-wave order parameter alone can be excluded.Comment: 7 pages, 2 figure
    corecore