3 research outputs found

    Local iontophoretic administration of cytotoxic therapies to solid tumors

    Get PDF
    Parenteral and oral routes have been the traditional methods of administering cytotoxic agents to cancer patients. Unfortunately, the maximum potential effect of these cytotoxic agents has been limited because of systemic toxicity and poor tumor perfusion. In an attempt to improve the efficacy of cytotoxic agents while mitigating their side effects, we have developed modalities for the localized iontophoretic delivery of cytotoxic agents. These iontophoretic devices were designed to be implanted proximal to the tumor with external control of power and drug flow. Three distinct orthotopic mouse models of cancer and a canine model were evaluated for device efficacy and toxicity. Orthotopic patient-derived pancreatic cancer xenografts treated biweekly with gemcitabine via the device for 7 weeks experienced a mean log2 fold change in tumor volume of −0.8 compared to a mean log2 fold change in tumor volume of 1.1 for intravenous (IV) gemcitabine, 3.0 for IV saline, and 2.6 for device saline groups. The weekly coadministration of systemic cisplatin therapy and transdermal device cisplatin therapy significantly increased tumor growth inhibition and doubled the survival in two aggressive orthotopic models of breast cancer. The addition of radiotherapy to this treatment further extended survival. Device delivery of gemcitabine in dogs resulted in more than 7-fold difference in local drug concentrations and 25-fold lower systemic drug levels than the IV treatment. Overall, these devices have potential paradigm shifting implications for the treatment of pancreatic, breast, and other solid tumors

    Iontophoretic device delivery for the localized treatment of pancreatic ductal adenocarcinoma

    No full text
    Poor delivery and systemic toxicity of many cytotoxic agents, such as the recent promising combination chemotherapy regimen of folinic acid (leucovorin), fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX), restrict their full utility in the treatment of pancreatic cancer. Local delivery of chemotherapies has become possible using iontophoretic devices that are implanted directly onto pancreatic tumors. We have fabricated implantable iontophoretic devices and tested the local iontophoretic delivery of FOLFIRINOX for the treatment of pancreatic cancer in an orthotopic patient-derived xenograft model. Iontophoretic delivery of FOLFIRINOX was found to increase tumor exposure by almost an order of magnitude compared with i.v. delivery with substantially lower plasma concentrations. Mice treated for 7 wk with device FOLFIRINOX experienced significantly greater tumor growth inhibition compared with i.v. FOLFIRINOX. A marker of cell proliferation, K(i)-67, was stained, showing a significant reduction in tumor cell proliferation. These data capitalize on the unique ability of an implantable iontophoretic device to deliver much higher concentrations of drug to the tumor compared with i.v. delivery. Local iontophoretic delivery of cytotoxic agents should be considered for the treatment of patients with unresectable nonmetastatic disease and for patients with the need for palliation of local symptoms, and may be considered as a neoadjuvant approach to improve resection rates and outcome in patients with localized and locally advanced pancreatic cancer
    corecore