77,890 research outputs found
A Statistical Analysis of the Influence of Deep Convection on Water Vapor Variability in the Tropical Upper Troposphere
The factors that control the influence of deep convective detrainment on water vapor in the tropical upper troposphere are examined using observations from multiple satellites in conjunction with a trajectory model. Deep convection is confirmed to act primarily as a moisture source to the upper troposphere, modulated by the ambient relative humidity (RH). Convective detrainment provides strong moistening at low RH and offsets drying due to subsidence across a wide range of RH. Strong day-to-day moistening and drying takes place most frequently in relatively dry transition zones, where between 0.01% and 0.1% of Tropical Rainfall Measuring Mission Precipitation Radar observations indicate active convection. Many of these strong moistening events in the tropics can be directly attributed to detrainment from recent tropical convection, while others in the subtropics appear to be related to stratosphere-troposphere exchange. The temporal and spatial limits of the convective source are estimated to be about 36-48 h and 600-1500 km, respectively, consistent with the lifetimes of detrainment cirrus clouds. Larger amounts of detrained ice are associated with enhanced upper tropospheric moistening in both absolute and relative terms. In particular, an increase in ice water content of approximately 400% corresponds to a 10-90% increase in the likelihood of moistening and a 30-50% increase in the magnitude of moistening.NASA Global Energy and Water Cycle programNASA Earth System Science researchTerraACRIMSAT NNG04GK90GGeological Science
Attraction of Acorn-Infesting \u3ci\u3eCydia Latiferreana\u3c/i\u3e (Lepidoptera: Tortricidae) to Pheromone-Baited Traps
Males of acorn-infesting Cydia latiferreana are attracted to an equilibrium mixture of the four isomers of 8, 10-dodecadien-l-ol acetate, the virgin female-produced pheromone. Trap height relative to the height of trees in which traps are placed seems to be a significant factor influencing moth catches at attractant-baited traps. In an oak woodlot and in an oak nursery, catches of male moths were greater in traps placed near the upper periphery of the canopy than at traps deployed at lower levels in the tree. Practical application of pheromone-baited traps in a forest situation will require further study on lure formulation and on trap deployment under forest conditions
PACE: Pricing And Cost Estimating handbook
The PACE (Pricing and Cost Estimating) system, its purpose, makeup, use, and capabilities are described
The impact of water on free-falling bodies
Report discussed measures to cushion impact on body falling into water. Heavy loads are generated by impact and by pressures of water cavity collapsing onto the body
Constraints on Dark Energy from Supernovae, Gamma Ray Bursts, Acoustic Oscillations, Nucleosynthesis and Large Scale Structure and the Hubble constant
The luminosity distance vs. redshift law is now measured using supernovae and
gamma ray bursts, and the angular size distance is measured at the surface of
last scattering by the CMB and at z = 0.35 by baryon acoustic oscillations. In
this paper this data is fit to models for the equation of state with w = -1, w
= const, and w(z) = w_0+w_a(1-a). The last model is poorly constrained by the
distance data, leading to unphysical solutions where the dark energy dominates
at early times unless the large scale structure and acoustic scale constraints
are modified to allow for early time dark energy effects. A flat LambdaCDM
model is consistent with all the data.Comment: 19 pages Latex with 8 Postscript figure files. A new reference and
constraint, w vs w' contour plots updated. Version accepted by the the Ap
Using visualization for visualization : an ecological interface design approach to inputting data
Visualization is experiencing growing use by a diverse community, with continuing improvements in the availability and usability of systems. In spite of these developments the problem of how first to get the data in has received scant attention: the established approach of pre-defined readers and programming aids has changed little in the last two decades. This paper proposes a novel way of inputting data for scientific visualization that employs rapid interaction and visual feedback in order to understand how the data is stored. The approach draws on ideas from the discipline of ecological interface design to extract and control important parameters describing the data, at the same time harnessing our innate human ability to recognize patterns. Crucially, the emphasis is on file format discovery rather than file format description, so the method can therefore still work when nothing is known initially of how the file was originally written, as is often the case with legacy binary data. © 2013 Elsevier Ltd
Magnetic field effects in few-level quantum dots: theory, and application to experiment
We examine several effects of an applied magnetic field on Anderson-type
models for both single- and two-level quantum dots, and make direct comparison
between numerical renormalization group (NRG) calculations and recent
conductance measurements. On the theoretical side the focus is on
magnetization, single-particle dynamics and zero-bias conductance, with
emphasis on the universality arising in strongly correlated regimes; including
a method to obtain the scaling behavior of field-induced Kondo resonance shifts
over a very wide field range. NRG is also used to interpret recent experiments
on spin-1/2 and spin-1 quantum dots in a magnetic field, which we argue do not
wholly probe universal regimes of behavior; and the calculations are shown to
yield good qualitative agreement with essentially all features seen in
experiment. The results capture in particular the observed field-dependence of
the Kondo conductance peak in a spin-1/2 dot, with quantitative deviations from
experiment occurring at fields in excess of 5 T, indicating the eventual
inadequacy of using the equilibrium single-particle spectrum to calculate the
conductance at finite bias.Comment: 15 pages, 12 figures. Version as published in PR
Recommended from our members
Preliminary observations of Rustaveli basin, Mercury
Rustaveli basin on Mercury (82.76° E, 52.39° N) is a 200.5 km diameter peak-ring basin. Since the approval of its name on April 24, 2012, it has not featured prominently in the literature. It is a large and important feature within the Hokusai (H5) quadrangle of which we are currently producing a 1:2M scale geological map. Here, we describe our first observations of Rustaveli
Recommended from our members
Preliminary findings from geological mapping of the Hokusai (H5) quadrangle of Mercury
Quadrangle geological maps from Mariner 10 data cover 45% of the surface of Mercury at 1:5M scale. Orbital MESSENGER data, which cover the entire planetary surface, can now be used to produce finer scale geological maps, including regions unseen by Mariner 10.
Hokusai quadrangle (0–90° E; 22.5–66° N) is in the hemisphere unmapped by Mariner 10. It contains prominent features which are already being studied, including: Rachmaninoff basin, volcanic vents within and around Rachmaninoff, much of the Northern Plains and abundant wrinkle ridges. Its northern latitude makes it a prime candidate for regional geological mapping since compositional and topographical data, as well as Mercury Dual Imaging System (MDIS) data, are available for geological interpretation. This work aims to produce a map at 1:2M scale, compatible with other new quadrangle maps and to complement a global map now in progress
- …