950 research outputs found

    Significance of solutions of the inverse Biot-Savart problem in thick superconductors

    Full text link
    The evaluation of current distributions in thick superconductors from field profiles near the sample surface is investigated theoretically. A simple model of a cylindrical sample, in which only circular currents are flowing, reduces the inversion to a linear least squares problem, which is analyzed by singular value decomposition. Without additional assumptions about the current distribution (e.g. constant current over the sample thickness), the condition of the problem is very bad, leading to unrealistic results. However, any additional assumption strongly influences the solution and thus renders the solutions again questionable. These difficulties are unfortunately inherent to the inverse Biot-Savart problem in thick superconductors and cannot be avoided by any models or algorithms

    Dynamic roughening of the magnetic flux landscape in YBa2_2Cu3_3O7−x_{7-x}

    Full text link
    We study the magnetic flux landscape in YBa2_2Cu3_3O7−x_{7-x} thin films as a two dimensional rough surface. The vortex density in the superconductor forms a self-affine structure in both space and time. This is characterized by a roughness exponent α=0.76(3)\alpha = 0.76(3) and a growth exponent β=0.57(6)\beta = 0.57(6). This is due to the structure and distribution of flux avalanches in the self-organized critical state, which is formed in the superconductor. We also discuss our results in the context of other roughening systems in the presence of quenched disorder.Comment: 13 pages, 7 figures, accepted for publication in Physica

    Magnetic flux density and the critical field in the intermediate state of type-I superconductors

    Full text link
    To address unsolved fundamental problems of the intermediate state (IS), the equilibrium magnetic flux structure and the critical field in a high purity type-I superconductor (indium film) are investigated using magneto-optical imaging with a 3D vector magnet and electrical transport measurements. The least expected observation is that the critical field in the IS can be as small as nearly 40% of the thermodynamic critical field HcH_c. This indicates that the flux density in the \textit{bulk} of normal domains can be \textit{considerably} less than HcH_c, in apparent contradiction with the long established paradigm, stating that the normal phase is unstable below HcH_c. Here we present a novel theoretical model consistently describing this and \textit{all} other properties of the IS. Moreover, our model, based the rigorous thermodynamic treatment of observed laminar flux structure in a tilted field, allows for a \textit{quantitative} determination of the domain-wall parameter and the coherence length, and provides new insight into the properties of all superconductors.Comment: 5 pages, 5 figure

    Halving the Casimir force with conductive oxides

    Get PDF
    The possibility to modify the strength of the Casimir effect by tailoring the dielectric functions of the interacting surfaces is regarded as a unique opportunity in the development of Micro- and NanoElectroMechanical Systems. In air, however, one expects that, unless noble metals are used, the electrostatic force arising from trapped charges overcomes the Casimir attraction, leaving no room for exploitation of Casimir force engineering at ambient conditions. Here we show that, in the presence of a conductive oxide, the Casimir force can be the dominant interaction even in air, and that the use of conductive oxides allows one to reduce the Casimir force up to a factor of 2 when compared to noble metals.Comment: modified version, accepted for publication in Phys Rev Let

    Dynamics of stripe patterns in type-I superconductors subject to a rotating field

    Full text link
    The evolution of stripe patterns in type-I superconductors subject to a rotating in-plane magnetic field is investigated magneto-optically. The experimental results reveal a very rich and interesting behavior of the patterns. For small rotation angles, a small parallel displacement of the main part of the stripes and a co-rotation of their very ends is observed. For larger angles, small sideward protrusions develop, which then generate a zigzag instability, ultimately leading to a breaking of stripes into smaller segments. The short segments then start to co-rotate with the applied field although they lag behind by approximately 10∘10^\circ. Very interestingly, if the rotation is continued, also reconnection of segments into longer stripes takes place. These observations demonstrate the importance of pinning in type-I superconductors.Comment: To appear in Phys. Rev.

    Magneto-optical imaging of magnetic deflagration in Mn12-Acetate

    Get PDF
    For the first time, the morphology and dynamics of spin avalanches in Mn12-Acetate crystals using magneto-optical imaging has been explored. We observe an inhomogeneous relaxation of the magnetization, the spins reversing first at one edge of the crystal and a few milliseconds later at the other end. Our data fit well with the theory of magnetic deflagration, demonstrating that very slow deflagration rates can be obtained, which makes new types of experiments possible.Comment: 5 two-column pages, 3 figures, EPL styl

    A window into the neutron star: Modelling the cooling of accretion heated neutron star crusts

    Full text link
    In accreting neutron star X-ray transients, the neutron star crust can be substantially heated out of thermal equilibrium with the core during an accretion outburst. The observed subsequent cooling in quiescence (when accretion has halted) offers a unique opportunity to study the structure and thermal properties of the crust. Initially crust cooling modelling studies focussed on transient X-ray binaries with prolonged accretion outbursts (> 1 year) such that the crust would be significantly heated for the cooling to be detectable. Here we present the results of applying a theoretical model to the observed cooling curve after a short accretion outburst of only ~10 weeks. In our study we use the 2010 outburst of the transiently accreting 11 Hz X-ray pulsar in the globular cluster Terzan 5. Observationally it was found that the crust in this source was still hot more than 4 years after the end of its short accretion outburst. From our modelling we found that such a long-lived hot crust implies some unusual crustal properties such as a very low thermal conductivity (> 10 times lower than determined for the other crust cooling sources). In addition, we present our preliminary results of the modelling of the ongoing cooling of the neutron star in MXB 1659-298. This transient X-ray source went back into quiescence in March 2017 after an accretion phase of ~1.8 years. We compare our predictions for the cooling curve after this outburst with the cooling curve of the same source obtained after its previous outburst which ended in 2001.Comment: 4 pages, 1 figure, to appear in the proceedings of "IAUS 337: Pulsar Astrophysics - The Next 50 Years" eds: P. Weltevrede, B.B.P. Perera, L. Levin Preston & S. Sanida
    • …
    corecore