209 research outputs found

    Relationship of somatosensory evoked potentials and cerebral oxygen consumption during hypoxic hypoxia in dogs

    Get PDF
    The effects of hypoxic hypoxia on cerebral hemodynamics and somatosensory evoked potential (SEP) were studied in 10 pentobarbital anestheteized dogs. Cerebral blood flow (CBF) was measured using the venous outflow technique and cerebral oxygen consumption (CMRO2) was calculated from the arterio-cerebro-venous oxygen difference times CBF. SEP was evaluated by percutaneous stimulation of an upper extremity nerve and was recorded over the contralateral somatosensory cortex. The latencies of the initial negative wave (N1), second positive wave (P2) and the amplitude of the primary complex (P1N1) were measured. Animals were breathed sequentially with oxygen concentrations of 21, 10, 6, 5, and 4.5% for five minutes each. Animals were returned to room air breathing when the amplitude of the SEP decreased to less than 20% of control and were observed for 30 minutes following reoxygenation. Severe hypoxia (4.5% O2) increased CBF to 200% of control, decreased CMRO2 to 45% of control, decreased amplitude and increased latency of SEP. Following reoxygenation, as CMRO2 increased toward control, latency of SEP decreased and amplitude increased and CBF returned to baseline within 30 min. During hypoxia and reoxygenation, the latencies of N1 and P2 and the amplitude of P1N1 were correlated with CMRO2 in individual animals. We conclude that changes in SEP amplitude and latency reflect changes in CMRO2 despite high CBF during rapidly progressive hypoxic hypoxia and following reoxygenation

    Exceptional Hyperthyroidism and a Role for both Major Histocompatibility Class I and Class II Genes in a Murine Model of Graves' Disease

    Get PDF
    Autoimmune hyperthyroidism, Graves' disease, can be induced by immunizing susceptible strains of mice with adenovirus encoding the human thyrotropin receptor (TSHR) or its A-subunit. Studies in two small families of recombinant inbred strains showed that susceptibility to developing TSHR antibodies (measured by TSH binding inhibition, TBI) was linked to the MHC region whereas genes on different chromosomes contributed to hyperthyroidism. We have now investigated TSHR antibody production and hyperthyroidism induced by TSHR A-subunit adenovirus immunization of a larger family of strains (26 of the AXB and BXA strains). Analysis of the combined AXB and BXA families provided unexpected insight into several aspects of Graves' disease. First, extreme thyroid hyperplasia and hyperthyroidism in one remarkable strain, BXA13, reflected an inability to generate non-functional TSHR antibodies measured by ELISA. Although neutral TSHR antibodies have been detected in Graves' sera, pathogenic, functional TSHR antibodies in Graves' patients are undetectable by ELISA. Therefore, this strain immunized with A-subunit-adenovirus that generates only functional TSHR antibodies may provide an improved model for studies of induced Graves' disease. Second, our combined analysis of linkage data from this and previous work strengthens the evidence that gene variants in the immunoglobulin heavy chain V region contribute to generating thyroid stimulating antibodies. Third, a broad region that encompasses the MHC region on mouse chomosome 17 is linked to the development of TSHR antibodies (measured by TBI). Most importantly, unlike other strains, TBI linkage in the AXB and BXA families to MHC class I and class II genes provides an explanation for the unresolved class I/class II difference in humans

    Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia

    Get PDF
    No single animal model is able to encompass all of the variables known to affect human ischemic stroke. This review highlights the major strengths and weaknesses of the most commonly used animal models of acute ischemic stroke in the context of matching model and experimental aim. Particular emphasis is placed on the relationships between outcome and underlying vascular variability, physiologic control, and use of models of comorbidity. The aim is to provide, for novice and expert alike, an overview of the key controllable determinants of experimental stroke outcome to help ensure the most effective application of animal models to translational research

    Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems

    Get PDF
    Rodent models of focal cerebral ischemia are essential tools in experimental stroke research. They have added tremendously to our understanding of injury mechanisms in stroke and have helped to identify potential therapeutic targets. A plethora of substances, however, in particular an overwhelming number of putative neuroprotective agents, have been shown to be effective in preclinical stroke research, but have failed in clinical trials. A lot of factors may have contributed to this failure of translation from bench to bedside. Often, deficits in the quality of experimental stroke research seem to be involved. In this article, we review the commonest rodent models of focal cerebral ischemia - middle cerebral artery occlusion, photothrombosis, and embolic stroke models - with their respective advantages and problems, and we address the issue of quality in preclinical stroke modeling as well as potential reasons for translational failure

    Translational Stroke Research Using a Rabbit Embolic Stroke Model: A Correlative Analysis Hypothesis for Novel Therapy Development

    Get PDF
    Alteplase (tissue plasminogen activator, tPA) is currently the only FDA-approved treatment that can be given to acute ischemic stroke (AIS) patients if patients present within 3 h of an ischemic stroke. After 14 years of alteplase clinical research, evidence now suggests that the therapeutic treatment window can be expanded 4.5 h, but this is not formally approved by the FDA. Even though there remains a significant risk of intracerebral hemorrhage associated with alteplase administration, there is an increased chance of favorable outcome with tPA treatment. Over the last 30 years, the use of preclinical models has assisted with the search for new effective treatments for stroke, but there has been difficulty with the translation of efficacy from animals to humans. Current research focuses on the development of new and potentially useful thrombolytics, neuroprotective agents, and devices which are also being tested for efficacy in preclinical and clinical trials. One model in particular, the rabbit small clot embolic stroke model (RSCEM) which was developed to test tPA for efficacy, remains the only preclinical model used to gain FDA approval of a therapeutic for stroke. Correlative analyses from existing preclinical translational studies and clinical trials indicate that there is a therapeutic window ratio (ARR) of 2.43-3 between the RSCEM and AIS patients. In conclusion, the RSCEM can be used as an effective translational tool to gauge the clinical potential of new treatments

    Gas-to-blood PCO2 differences during severe hypercapnia

    No full text

    Muscarinic cholinergic receptors in canine adrenal gland

    No full text
    • …
    corecore