134 research outputs found
A Geometric Theory of Diblock Copolymer Phases
We analyze the energetics of sphere-like micellar phases in diblock
copolymers in terms of well-studied, geometric quantities for their lattices.
We argue that the A15 lattice with Pm3n symmetry should be favored as the
blocks become more symmetric and corroborate this through a self-consistent
field theory. Because phases with columnar or bicontinuous topologies
intervene, the A15 phase, though metastable, is not an equilibrium phase of
symmetric diblocks. We investigate the phase diagram of branched diblocks and
find thatthe A15 phase is stable.Comment: 4 pages, RevTeX, 3 eps figures include
Nanoparticle-regulated phase behavior of ordered block copolymers
This document is the accepted manuscript version of a published article. Published by The Royal Society of Chemistry in the journal "Soft Matter" issue 8, DOI: 10.1039/b805540hAlthough block copolymer motifs have received considerable
attention as supramolecular templates for inorganic nanoparticles,
experimental observations of a nanostructured diblock copolymer
containing inorganic nanoparticles—supported by theoretical trends
predicted from a hybrid self-consistent field/density functional
theory—confirm that nanoparticle size and selectivity can likewise
stabilize the copolymer nanostructure by increasing its order–
disorder transition temperature.Research Council of Norway under the NANOMAT Program
Los Alamos National Laboratory || Contract No. DE-AC52-06NA25396
NSERC of Canada
GEM Fellowship and a NOBCChE Procter and Gamble Fellowship
Recommended from our members
Materials descriptors for advanced water dissociation catalysts in bipolar membranes
The voltage penalty driving water dissociation (WD) at high current density is a major obstacle in the commercialization of bipolar membrane (BPM) technology for energy devices. Here we show that three materials descriptors, that is, electrical conductivity, microscopic surface area and (nominal) surface-hydroxyl coverage, effectively control the kinetics of WD in BPMs. Using these descriptors and optimizing mass loading, we design new earth-abundant WD catalysts based on nanoparticle SnO2 synthesized at low temperature with high conductivity and hydroxyl coverage. These catalysts exhibit exceptional performance in a BPM electrolyser with low WD overvoltage (ηwd) of 100 ± 20 mV at 1.0 A cm-2. The new catalyst works equivalently well with hydrocarbon proton-exchange layers as it does with fluorocarbon-based Nafion, thus providing pathways to commercializing advanced BPMs for a broad array of electrolysis, fuel-cell and electrodialysis applications
Interfaces of Modulated Phases
Numerically minimizing a continuous free-energy functional which yields
several modulated phases, we obtain the order-parameter profiles and
interfacial free energies of symmetric and non-symmetric tilt boundaries within
the lamellar phase, and of interfaces between coexisting lamellar, hexagonal,
and disordered phases. Our findings agree well with chevron, omega, and
T-junction tilt-boundary morphologies observed in diblock copolymers and
magnetic garnet films.Comment: 4 page
Microfibres and macroscopic films from the coordination-driven hierarchical self-assembly of cylindrical micelles
Anisotropic nanoparticles prepared from block copolymers are of growing importance as building blocks for the creation of synthetic hierarchical materials. However, the assembly of these structural units is generally limited to the use of amphiphilic interactions. Here we report a simple, reversible coordination-driven hierarchical self-assembly strategy for the preparation of micron-scale fibres and macroscopic films based on monodisperse cylindrical block copolymer micelles. Coordination of Pd(0) metal centres to phosphine ligands immobilized within the soluble coronas of block copolymer micelles is found to induce intermicelle crosslinking, affording stable linear fibres comprised of micelle subunits in a staggered arrangement. The mean length of the fibres can be varied by altering the micelle concentration, reaction stoichiometry or aspect ratio of the micelle building blocks. Furthermore, the fibres aggregate on drying to form robust, self-supporting macroscopic micelle-based thin films with useful mechanical properties that are analogous to crosslinked polymer networks, but on a longer length scale
Functional Modularity of the Arginine Catabolic Mobile Element Contributes to the Success of USA300 Methicillin-Resistant Staphylococcus aureus
The successful USA300 Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) lineage predominantly causes skin and soft tissue infections (SSTIs) and is highly associated with carriage of the Arginine Catabolic Mobile Element (ACME). However, the contribution of ACME to USA300 fitness during SSTIs remains incompletely understood. We show that the constitutive ACME-encoded arginine-deiminase system (Arc) allows USA300 to thrive in acidic environments that mimic human skin. Consequently, ACME-Arc drives excessive production of host polyamines, compounds uniquely toxic to S. aureus. To mitigate this, ACME also encodes SpeG, a polyamine-resistance enzyme that is essential for combating excess host polyamines in a murine SSTI model. Inhibiting host polyamine production not only restored ΔspeG persistence within infected wounds but also severely altered the host healing process, implying that polyamines play integral roles in coordinating the wound-healing response. Together, these data underscore the functional modularity of ACME and its contribution to the success of USA300 CA-MRSA
Nanoparticle Network Formation in Nanostructured and Disordered Block Copolymer Matrices
Incorporation of nanoparticles composed of surface-functionalized fumed silica (FS) or native colloidal silica (CS) into a nanostructured block copolymer yields hybrid nanocomposites whose mechanical properties can be tuned by nanoparticle concentration and surface chemistry. In this work, dynamic rheology is used to probe the frequency and thermal responses of nanocomposites composed of a symmetric poly(styrene-b-methyl methacrylate) (SM) diblock copolymer and varying in nanoparticle concentration and surface functionality. At sufficiently high loading levels, FS nanoparticle aggregates establish a load-bearing colloidal network within the copolymer matrix. Transmission electron microscopy images reveal the morphological characteristics of the nanocomposites under these conditions
- …