238 research outputs found

    Biological Implications of Hydroxyapatite Coatings on 3D Printed Titanium Implants

    Get PDF
    This study sought to determine the growth of and viability of osteoblast cells on hydroxyapatite coatings of 3D-printed titanium implants. The experiment used twenty 3D-printed titanium disks each of which had a determined surface roughness. These disks were printed by Tangible Solutions, LLC (Fairborn, OH) and then sonicated. Ten of the disks were coated with hydroxyapatite through the process of electrodeposition using an open cell and a three lead potentiostat. Using the hydroxyapatite coated titanium disks and uncoated disks, two four-day growth trials were performed. Two trials used five control disks (uncoated titanium disks) and five coated disks each, making an n of 10 for the total experiment. The disks were each placed into the wells of a culture plate and each disk was seeded with 15,000 human osteoblast cells. After four days in the incubator, the cells were removed using trypsin and the counted using the CytoSmart Automated Hemocytometer. The cell count from each disk as well as the viability of the cells from each disk were recorded. Means comparison was performed using Tukey-Kramer method of analysis. Results from the cell count portion of the experiment showed that the mean of the hydroxyapatite group was not significantly greater than the control group (p=0.83). In addition, cell viability of the hydroxyapatite group was also not significantly different than the control group (p=0.31). This data was unexpected but may be due to a change in the surface roughness between the two groups caused by the hydroxyapatite coating decreasing the surface roughness. The surface roughness selected for the experiment was chosen due to it being the most ideal for osteoblast growth, but any less rough surfaces were shown to be less ideal for osteoblast cell growth. Future Experiments will remove the variable of surface roughness

    The Different Artificial Sweeteners and Their Effects on Endothelial Cell/Blood Vessel Health: Possible Implications for Ringing in the Ear

    Get PDF
    Abstract: Background: Tinnitus, a condition whose remarkable symptom is ringing in the ear (RIE), is a problem plaguing people all around the world in varying degrees of severity, though it is most common and severe in older populations. Literature is lacking on its etiology. Therefore, it is difficult to diagnose and treat. Several possible components could play a role in the development of tinnitus including neurological, physiological, traumatic, dietary and vascular factors. No factor has yet been definitively linked to the development of tinnitus. Vascular health can be significantly impacted by diet- especially in regard to sugars. As artificial sweeteners are used widely in the American diet, they may play a significant role in vascular health. Objective: This project aims to investigate a possible connection between artificial sugars’ impact on vascular health and complaints of RIE among age groups through a patient survey and laboratory experiments. Methods: A survey assessing individuals’ demographic information, subjective severity of RIE and reported artificial sweetener consumption will be distributed to audiologists’ offices in major Ohio cities, via Qualtrics, where patients will complete them. Data collected will be analyzed for interrelationships among sugar intake, age and severity of RIE. In the laboratory, an ELISA assay will evaluate the effects of artificial sweeteners on endothelial cells- the same cells that comprise blood vessels- through quantifying stimulation of the Tie-2 survival and angiogenesis pathway via the cellular messenger pAKT

    3D Printed PLA Scaffolds to Promote Healing of Large Bone Defects

    Get PDF
    One challenge modern medicine faces is the ability to repair large bone defects and stimulate healing. Small defects typically heal naturally, but large bone defects do not and current solutions are to replace the missing tissue with biologically inert materials such as titanium. This limits the amount of bone healing as the defect is not repaired but rather replaced. The focus of our research is to develop a method of using 3D printing to create biodegradable scaffolds which promote bone in-growth and replacement. To accomplish this we used poly lactic acid (PLA) filament and a desktop 3D printer. To promote bone healing and provide mechanical support our team investigated different design methodologies to provide a scaffold of customizable stiffness while allowing cell attachment and in-growth. Our team used CAD modeling to create unique architecture design systems which we analyzed for stiffness using Finite Element Analysis (FEA). We developed a unit cell method of scaffold construction that allowed for customized stiffness of irregular shapes. We 3D printed our designs using a desktop 3D printer and verified our stiffness through mechanical tension and compression testing. We investigated cell viability of the scaffolds by immersing test specimens in culturing media and fibroblast cells. Fibroblast cells are from the same lineage as osteoblast cells but are much faster growing, allowing for more efficient testing. Specimens were left in the media for one week then a total cell count was performed. Scaffold designs were then evaluated based on stiffness and cell viability. We have produced several different viable models with appropriate stiffness for human trabecular bone and good cellular adhesion

    Interaction effects on common measures of sensitivity:Choice of measure, type I error, and power

    Get PDF
    Here we use simulation to assess previously unaddressed problems in the assessment of statistical interactions in detection and recognition tasks. The proportion of hits and false-alarms made by an observer on such tasks is affected by both their sensitivity and bias, and numerous measures have been developed to separate out these two factors. Each of these measures makes different assumptions regarding the underlying process and different predictions as to how false-alarm and hit rates should covary. Previous simulations have shown that choice of an inappropriate measure can lead to inflated type I error rates, or reduced power, for main effects, provided there are differences in response bias between the conditions being compared. Interaction effects pose a particular problem in this context. We show that spurious interaction effects in analysis of variance can be produced, or true interactions missed, even in the absence of variation in bias. Additional simulations show that variation in bias complicates patterns of type I error and power further. This under-appreciated fact has the potential to greatly distort the assessment of interactions in detection and recognition experiments. We discuss steps researchers can take to mitigate their chances of making an error

    Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles

    Get PDF
    Inorganic nanoparticles provide promising tools for biomedical applications including detection, diagnosis and therapy. While surface properties such as charge are expected to play an important role in their in vivo behavior, very little is known how the surface chemistry of nanoparticles influences their pharmacokinetics, tumor uptake, and biodistribution.Using a family of structurally homologous nanoparticles we have investigated how pharmacological properties including tumor uptake and biodistribution are influenced by surface charge using neutral (TEGOH), zwitterionic (Tzwit), negative (TCOOH) and positive (TTMA) nanoparticles. Nanoparticles were injected into mice (normal and athymic) either in the tail vein or into the peritoneum.Neutral and zwitterionic nanoparticles demonstrated longer circulation time via both i.p. and i.v. administration, whereas negatively and positively charged nanoparticles possessed relatively short half-lives. These pharmacological characteristics were reflected on the tumor uptake and biodistribution of the respective nanoparticles, with enhanced tumor uptake by neutral and zwitterionic nanoparticles via passive targeting

    Identifying New Therapeutic Targets via Modulation of Protein Corona Formation by Engineered Nanoparticles

    Get PDF
    We introduce a promising methodology to identify new therapeutic targets in cancer. Proteins bind to nanoparticles to form a protein corona. We modulate this corona by using surface-engineered nanoparticles, and identify protein composition to provide insight into disease development.Using a family of structurally homologous nanoparticles we have investigated the changes in the protein corona around surface-functionalized gold nanoparticles (AuNPs) from normal and malignant ovarian cell lysates. Proteomics analysis using mass spectrometry identified hepatoma-derived growth factor (HDGF) that is found exclusively on positively charged AuNPs ((+)AuNPs) after incubation with the lysates. We confirmed expression of HDGF in various ovarian cancer cells and validated binding selectivity to (+)AuNPs by Western blot analysis. Silencing of HDGF by siRNA resulted s inhibition in proliferation of ovarian cancer cells.We investigated the modulation of protein corona around surface-functionalized gold nanoparticles as a promising approach to identify new therapeutic targets. The potential of our method for identifying therapeutic targets was demonstrated through silencing of HDGF by siRNA, which inhibited proliferation of ovarian cancer cells. This integrated proteomics, bioinformatics, and nanotechnology strategy demonstrates that protein corona identification can be used to discover novel therapeutic targets in cancer

    Hypothermia in a surgical intensive care unit

    Get PDF
    BACKGROUND: Inadvertent hypothermia is not uncommon in the immediate postoperative period and it is associated with impairment and abnormalities in various organs and systems that can lead to adverse outcomes. The aim of this study was to estimate the prevalence, the predictive factors and outcome of core hypothermia on admission to a surgical ICU. METHODS: All consecutive 185 adult patients who underwent scheduled or emergency noncardiac surgery admitted to a surgical ICU between April and July 2004 were admitted to the study. Tympanic membrane core temperature (Tc) was measured before surgery, on arrival at ICU and every two hours until 6 hours after admission. The following variables were also recorded: age, sex, body weight and height, ASA physical status, type of surgery, magnitude of surgical procedure, anesthesia technique, amount of intravenous fluids administered during anesthesia, use of temperature monitoring and warming techniques, duration of the anesthesia, ICU length of stay, hospital length of stay and SAPS II score. Patients were classified as either hypothermic (Tc ≤ 35°C) or normothermic (Tc> 35°C). Univariate analysis and multiple regression binary logistic with an odds ratio (OR) and its 95% Confidence Interval (95%CI) were used to compare the two groups of patients and assess the relationship between each clinical predictor and hypothermia. Outcome measured as ICU length of stay and mortality was also assessed. RESULTS: Prevalence of hypothermia on ICU admission was 57.8%. In univariate analysis temperature monitoring, use of warming techniques and higher previous body temperature were significant protective factors against core hypothermia. In this analysis independent predictors of hypothermia on admission to ICU were: magnitude of surgery, use of general anesthesia or combined epidural and general anesthesia, total intravenous crystalloids administrated and total packed erythrocytes administrated, anesthesia longer than 3 hours and SAPS II scores. In multiple logistic regression analysis significant predictors of hypothermia on admission to the ICU were magnitude of surgery (OR 3.9, 95% CI, 1.4–10.6, p = 0.008 for major surgery; OR 3.6, 95% CI, 1.5–9.0, p = 0.005 for medium surgery), intravenous administration of crystalloids (in litres) (OR 1.4, 95% CI, 1.1–1.7, p = 0.012) and SAPS score (OR 1.0, 95% CI 1.0–1.7, p = 0.014); higher previous temperature in ward was a significant protective factor (OR 0.3, 95% CI 0.1–0.7, p = 0.003). Hypothermia was neither a risk factor for hospital mortality nor a predictive factor for staying longer in ICU. CONCLUSION: The prevalence of patient hypothermia on ICU arrival was high. Hypothermia at time of admission to the ICU was not an independent factor for mortality or for staying longer in ICU
    • …
    corecore