14,229 research outputs found
Holographic quantum states
We show how continuous matrix product states of quantum field theories can be
described in terms of the dissipative non-equilibrium dynamics of a
lower-dimensional auxiliary boundary field theory. We demonstrate that the
spatial correlation functions of the bulk field can be brought into one-to-one
correspondence with the temporal statistics of the quantum jumps of the
boundary field. This equivalence: (1) illustrates an intimate connection
between the theory of continuous quantum measurement and quantum field theory;
(2) gives an explicit construction of the boundary field theory allowing the
extension of real-space renormalization group methods to arbitrary dimensional
quantum field theories without the introduction of a lattice parameter; and (3)
yields a novel interpretation of recent cavity QED experiments in terms of
quantum field theory, and hence paves the way toward observing genuine quantum
phase transitions in such zero-dimensional driven quantum systems.Comment: 6 pages, 1 figure. Emphasis change
The ground state of a class of noncritical 1D quantum spin systems can be approximated efficiently
We study families H_n of 1D quantum spin systems, where n is the number of
spins, which have a spectral gap \Delta E between the ground-state and
first-excited state energy that scales, asymptotically, as a constant in n. We
show that if the ground state |\Omega_m> of the hamiltonian H_m on m spins,
where m is an O(1) constant, is locally the same as the ground state
|\Omega_n>, for arbitrarily large n, then an arbitrarily good approximation to
the ground state of H_n can be stored efficiently for all n. We formulate a
conjecture that, if true, would imply our result applies to all noncritical 1D
spin systems. We also include an appendix on quasi-adiabatic evolutions.Comment: 9 pages, 1 eps figure, minor change
The SSS phase of RS Ophiuchi observed with Chandra and XMM-Newton I.: Data and preliminary Modeling
The phase of Super-Soft-Source (SSS) emission of the sixth recorded outburst
of the recurrent nova RS Oph was observed twice with Chandra and once with
XMM-Newton. The observations were taken on days 39.7, 54.0, and 66.9 after
outburst. We confirm a 35-sec period on day 54.0 and found that it originates
from the SSS emission and not from the shock. We discus the bound-free
absorption by neutral elements in the line of sight, resonance absorption lines
plus self-absorbed emission line components, collisionally excited emission
lines from the shock, He-like intersystem lines, and spectral changes during an
episode of high-amplitude variability. We find a decrease of the oxygen K-shell
absorption edge that can be explained by photoionization of oxygen. The
absorption component has average velocities of -1286+-267 km/s on day 39.7 and
of -771+-65 km/s on day 66.9. The wavelengths of the emission line components
are consistent with their rest wavelengths as confirmed by measurements of
non-self absorbed He-like intersystem lines. We have evidence that these lines
originate from the shock rather than the outer layers of the outflow and may be
photoexcited in addition to collisional excitations. We found collisionally
excited emission lines that are fading at wavelengths shorter than 15A that
originate from the radiatively cooling shock. On day 39.5 we find a systematic
blue shift of -526+-114 km/s from these lines. We found anomalous He-like f/i
ratios which indicates either high densities or significant UV radiation near
the plasma where the emission lines are formed. During the phase of strong
variability the spectral hardness light curve overlies the total light curve
when shifted by 1000sec. This can be explained by photoionization of neutral
oxygen in the line of sight if the densities of order 10^{10}-10^{11} cm^{-3}.Comment: 16 pages, 10 figures, 4 tables. Accepted by ApJ; v2: Co-author
Woodward adde
General entanglement scaling laws from time evolution
We establish a general scaling law for the entanglement of a large class of
ground states and dynamically evolving states of quantum spin chains: we show
that the geometric entropy of a distinguished block saturates, and hence
follows an entanglement-boundary law. These results apply to any ground state
of a gapped model resulting from dynamics generated by a local hamiltonian, as
well as, dually, to states that are generated via a sudden quench of an
interaction as recently studied in the case of dynamics of quantum phase
transitions. We achieve these results by exploiting ideas from quantum
information theory and making use of the powerful tools provided by
Lieb-Robinson bounds. We also show that there exist noncritical fermionic
systems and equivalent spin chains with rapidly decaying interactions whose
geometric entropy scales logarithmically with block length. Implications for
the classical simulatability are outlined.Comment: 4 pages, 1 figure (see also related work by S. Bravyi, M. Hastings,
and F. Verstraete, quant-ph/0603121); replaced with final versio
Gamma-Ray Bursts observed by XMM-Newton
Analysis of observations with XMM-Newton have made a significant contribution
to the study of Gamma-ray Burst (GRB) X-ray afterglows. The effective area,
bandpass and resolution of the EPIC instrument permit the study of a wide
variety of spectral features. In particular, strong, time-dependent, soft X-ray
emission lines have been discovered in some bursts. The emission mechanism and
energy source for these lines pose major problems for the current generation of
GRB models. Other GRBs have intrinsic absorption, possibly related to the
environment around the progenitor, or possible iron emission lines similar to
those seen in GRBs observed with BeppoSAX. Further XMM-Newton observations of
GRBs discovered by the Swift satellite should help unlock the origin of the GRB
phenomenon over the next few years.Comment: To appear in proceedings of the "XMM-Newton EPIC Consortium meeting,
Palermo, 2003 October 14-16", published in Memorie della Societa Astronomica
Italian
Black hole hunting in the Andromeda Galaxy
We present a new technique for identifying stellar mass black holes in low
mass X-ray binaries (LMXBs), and apply it to XMM-Newton observations of M31. We
examine X-ray time series variability seeking power density spectra (PDS)
typical of LMXBs accreting at a low accretion rate (which we refer to as Type A
PDS); these are very similar for black hole and neutron star LMXBs. Galactic
neutron star LMXBs exhibit Type A PDS at low luminosities (~10^36--10^37 erg/s)
while black hole LMXBs can exhibit them at luminosities >10^38 erg/s. We
propose that Type A PDS are confined to luminosities below a critical fraction
of the Eddington limit, that is constant for all LMXBs; we have examined
asample of black hole and neutron star LMXBs and find they are all consistent
with = 0.10+/-0.04 in the 0.3--10 keV band. We present luminosity and PDS
data from 167 observations of X-ray binaries in M31 that provide strong support
for our hypothesis. Since the theoretical maximum mass for a neutron star is
\~3.1 M_Sun, we therefore assert that any LMXB that exhibits a Type A PDS at a
0.3--10 keV luminosity greater than 4 x 10^37 erg/s is likely to contain a
black hole primary. We have found eleven new black hole candidates in M31 using
this method. We focus on XMM-Newton observations of RX J0042.4+4112, an X-ray
source in M31 and find the mass of the primary to be 7+/-2 M_Sun, if our
assumptions are correct. Furthermore, RX J0042.4+4112 is consistently bright in
\~40 observations made over 23 years, and is likely to be a persistently bright
LMXB; by contrast all known Galactic black hole LMXBs are transient. Hence our
method may be used to find black holes in known, persistently bright Galactic
LMXBs and also in LMXBs in other galaxies.Comment: 6 Pages, 6 figures. To appear in the conference proceedings of
"Interacting Binaries: Accretion, Evolution and Outcomes" (Cefalu, July 4-10
2004
Discovery of disc precession in the M31 dipping X-ray binary Bo 158
We present results from three XMM-Newton observations of the M31 low mass
X-ray binary XMMU J004314.4+410726.3 (Bo 158), spaced over 3 days in 2004,
July. Bo 158 was the first dipping LMXB to be discovered in M31. Periodic
intensity dips were previously seen to occur on a 2.78-hr period, due to
absorption in material that is raised out of the plane of the accretion disc.
The report of these observations stated that the dip depth was anti-correlated
with source intensity. However, our new observations do not favour a strict
intensity dependance, but rather suggest that the dip variation is due to
precession of the accretion disc. This is to be expected in LMXBs with a mass
ratio <~ 0.3 (period <~ 4 hr), as the disc reaches the 3:1 resonance with the
binary companion, causing elongation and precession of the disc. A smoothed
particle hydrodynamics simulation of the disc in this system shows retrograde
rotation of a disc warp on a period of ~11 P_orb, and prograde disc precession
on a period of ~29 P_orb. This is consistent with the observed variation in the
depth of the dips. We find that the dipping behaviour is most likely to be
modified by the disc precession, hence we predict that the dipping behaviour
repeats on a 81+/-3 hr cycle.Comment: 9 pages, 6 figures, accepted for publication by MNRAS, changed
conten
Spectral evolution and the onset of the X-ray GRB afterglow
Based on light curves from the Swift Burst Analyser, we investigate whether a
`dip' feature commonly seen in the early-time hardness ratios of Swift-XRT data
could arise from the juxtaposition of the decaying prompt emission and rising
afterglow. We are able to model the dip as such a feature, assuming the
afterglow rises as predicted by Sari & Piran (1999). Using this model we
measure the initial bulk Lorentz factor of the fireball. For a sample of 23
GRBs we find a median value of Gamma_0=225, assuming a constant-density
circumburst medium; or Gamma_0=93 if we assume a wind-like medium.Comment: 4 pages, 3 figures. To appear in the proceedings of GRB 2010,
Annapolis November 2010. (AIP Conference proceedings
The C-terminal portion of the cleaved HT motif is necessary and sufficient to mediate export of proteins from the malaria parasite into its host cell
The malaria parasite exports proteins across its plasma membrane and a surrounding parasitophorous vacuole membrane, into its host erythrocyte. Most exported proteins contain a Host Targeting motif (HT motif) that targets them for export. In the parasite secretory pathway, the HT motif is cleaved by the protease plasmepsin V, but the role of the newly generated N-terminal sequence in protein export is unclear. Using a model protein that is cleaved by an exogenous viral protease, we show that the new N-terminal sequence, normally generated by plasmepsin V cleavage, is sufficient to target a protein for export, and that cleavage by plasmepsin V is not coupled directly to the transfer of a protein to the next component in the export pathway. Mutation of the fourth and fifth positions of the HT motif, as well as amino acids further downstream, block or affect the efficiency of protein export indicating that this region is necessary for efficient export. We also show that the fifth position of the HT motif is important for plasmepsin V cleavage. Our results indicate that plasmepsin V cleavage is required to generate a new N-terminal sequence that is necessary and sufficient to mediate protein export by the malaria parasite
- …