1,181 research outputs found

    A low-mass faraday cup experiment for the solar wind

    Get PDF
    Faraday cups have proven to be very reliable and accurate instruments capable of making 3-D velocity distribution measurements on spinning or 3-axis stabilized spacecraft. Faraday cup instrumentation continues to be appropriate for heliospheric missions. As an example, the reductions in mass possible relative to the solar wind detection system about to be flown on the WIND spacecraft were estimated. Through the use of technology developed or used at the MIT Center for Space Research but were not able to utilize for WIND: surface-mount packaging, field-programmable gate arrays, an optically-switched high voltage supply, and an integrated-circuit power converter, it was estimated that the mass of the Faraday Cup system could be reduced from 5 kg to 1.8 kg. Further redesign of the electronics incorporating hybrid integrated circuits as well as a decrease in the sensor size, with a corresponding increase in measurement cycle time, could lead to a significantly lower mass for other mission applications. Reduction in mass of the entire spacecraft-experiment system is critically dependent on early and continual collaborative efforts between the spacecraft engineers and the experimenters. Those efforts concern a range of issues from spacecraft structure to data systems to the spacecraft power voltage levels. Requirements for flight qualification affect use of newer, lighter electronics packaging and its implementation; the issue of quality assurance needs to be specifically addressed. Lower cost and reduced mass can best be achieved through the efforts of a relatively small group dedicated to the success of the mission. Such a group needs a fixed budget and greater control over quality assurance requirements, together with a reasonable oversight mechanism

    Bianchi Type Cosmological Models in f(T)f(T) Tele-parallel Gravity

    Full text link
    Symmetry assumptions on the geometrical framework have provided successful mechanisms to develop physically meaningful solutions to many problems. In tele-parallel gravity, invariance of the frame and spin-connection under a group of motions defines an affine symmetry group. Here, we assume there exists a three-dimensional group of affine symmetries acting simply transitively on a spatial hypersurface and that this group of symmetry actions defines our affine frame symmetry group. We determine the general form of the co-frame and spin connection for each spatially homogeneous Bianchi type. We then construct the corresponding field equations for f(T)f(T) tele-parallel gravity. We show that if the symmetry group is of Bianchi type A (II, IIII, VI0VI_0, VII0VII_0, VIIIVIII or IXIX) then there exists a co-frame/spin connection pair that is consistent with the antisymmetric part of the field equations of f(T)f(T) tele-parallel gravity. For those geometries having a Bianchi type B symmetry group (IVIV, VV, VIhVI_h, VIIhVII_h), we find that in general these geometries are inconsistent with the antisymmetric part of the f(T)f(T) tele-parallel gravity field equations unless the theory reduces to an analog of General Relativity with a cosmological constant.Comment: 28 page

    S100A6 preferentially labels type C nevus cells and nevic corpuscles: additional support for Schwannian differentiation of intradermal nevi

    Full text link
    Melanocytic nevi typically show a morphologic sequence of maturation from epithelioid “type A” cells to fusiform, Schwann cell-like “type C” cells with dermal descent. Nevi may also produce Wagner-Meissner-like structures (nevic corpuscles). Previous studies have shown that this maturation of intradermal nevi recapitulates intermediate stages in Schwann cell development. In intradermal nevi, we have evaluated the pattern of S100A6 protein, a form of S100 found in Schwann cells. Methods: Formalin-fixed, paraffin-embedded archival tissues were evaluated by immunohistochemistry using antibodies specific for S100A6 and S100B in 38 intradermal nevi (IDN). Ten neurofibromas (NF), 3 Schwannomas (SCH), 2 palisaded and encapsulated neuromas (PEN), and 2 granular cell tumors (GCT) were included as positive controls since these lesions have large numbers of Schwann cells. Results: Melanocytic nevi demonstrated preferential anti-S100A6 staining of “type C” cells (36/38; 28 strong, 8 weak) and nevic corpuscles (25/38; 19 strong, 6 weak) compared to “type A” cells (17/38; 17 weak) and “type B” cells (17/38; 4 strong, 13 weak). All NF, SCH, and PEN stained strongly with anti-S100A6. Both GCT were negative with anti-S100A6 but positive with anti-S100B. Conclusions: The pattern of S100A6 expression in intradermal nevi further supports the hypothesis that maturation in these lesions recapitulates features of Schwann cell differentiation. The lack of S100A6 expression by both GCT suggests that these lesions have lost this feature of Schwann cells, which may play a role in their peculiar phenotypic appearance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75660/1/j.1600-0560.2001.028008393.x.pd

    The Distance to the Heliospheric VLF Emission Region

    Get PDF
    Two major episodes of heliospheric VLF emissions near 3 kHz have been observed by the Voyager spacecraft in 1983-1984 and 1992-1993. This higher-frequency component is apparently triggered by solar wind transients with sufficiently large spatial extents and energies to continue to propagate as shocks in the heliosheath. Entrainment of previously unshocked material and changed flow conditions in the heliosheath both tend to slow the shock propagation. The shock evolution is not self-similar. Rather, it is intermediate to two blast-wave similarity solutions in the moving solar wind frame. In one solution the shock moves as time to the 2/3 power and in the other as time to the 4/5 power. Using these models, the shock/Forbush decrease observed at Voyager 2 in September, 1991 and the turn-on of the 1992 emission is consistent with an emission region distance of approx. 130 AU (assuming no additional slowing of the shock in the heliosheath). If the termination shock was at approx. 70 AU when the transient shock collided with it, the true distance to the source region was probably closer to approx. 115 AU

    Novel High Frequency Silicon Carbide Static Induction Transistor-Based Test-Bed for the Acquisition of SiC Power Device Reverse Recovery Characteristics

    Get PDF
    A test system is presented that utilizes a high-frequency Silicon Carbide (SiC) Static Induction Transistor (SIT) in place of the traditional MOSFET to test reverse recovery characteristics for the new class of SiC power diodes. An easily implementable drive circuit is presented that can drive the high-frequency SIT. The SiC SIT is also compared to a commonly used Si MOSFET in the test circuit application

    Biomechanics of predator–prey arms race in lion, zebra, cheetah and impala

    Get PDF
    The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator–prey pairs, lion–zebra and cheetah–impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator–prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate

    Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe

    Get PDF
    A solar energetic particle event was detected by the Integrated Science Investigation of the Sun (IS⊙IS) instrument suite on Parker Solar Probe (PSP) on 2019 April 4 when the spacecraft was inside of 0.17 au and less than 1 day before its second perihelion, providing an opportunity to study solar particle acceleration and transport unprecedentedly close to the source. The event was very small, with peak 1 MeV proton intensities of ~0.3 particles (cm² sr s MeV)⁻¹, and was undetectable above background levels at energies above 10 MeV or in particle detectors at 1 au. It was strongly anisotropic, with intensities flowing outward from the Sun up to 30 times greater than those flowing inward persisting throughout the event. Temporal association between particle increases and small brightness surges in the extreme-ultraviolet observed by the Solar TErrestrial RElations Observatory, which were also accompanied by type III radio emission seen by the Electromagnetic Fields Investigation on PSP, indicates that the source of this event was an active region nearly 80° east of the nominal PSP magnetic footpoint. This suggests that the field lines expanded over a wide longitudinal range between the active region in the photosphere and the corona
    corecore