376 research outputs found
Children and young people\u27s self-reported experiences of asthma and self-management nursing strategies: An integrative review
Aim: To explore children and young people\u27s (CYP) (5–24 years of age) self-reported experiences of asthma self-management strategies (ASMS) with nursing involvement across various settings. Background: Childhood asthma is an increasingly significant health issue, highlighting the importance of acquiring self-management skills to optimise future health outcomes. Registered nurses play a pivotal role in delivering appropriate, personalized self-management support. Methods: This integrative review searched four electronic databases: Cumulated Index to Nursing and Allied Health Literature via Elton B. Stephens Company, Medical Literature Analysis and Retrieval System Online (MEDLINE), Object, View and Interactive Design (OVID), and PubMed, that followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis flowchart. Included studies were critically appraised using the Joanna Briggs Institute critical appraisal tools. Braun and Clarks thematic analysis was used to generate themes, and sub-themes. Findings: Fifteen studies were included for review. Thematic analysis generated three themes being healthy literacy; health and wellbeing; and tools and working together. Conclusions: Asthma continues to have negative physical, psychological, and social implications among CYP. CYP are both willing and capable of engaging in ASMS and learning self-management skills, however, continue to have unmet self-management needs. Implications to practice: Strategies must bolster health literacy, improve physical and psychological health, and harness interactive, youth-centric, and informative tools to facilitate communication and decrease the burden of self-management. Applications pose a promising avenue for self-management support. This age group remains under-explored and future research should enable meaningful engagement with CYP to better understand their perspectives and improve strategy success
Electrical expression of spin accumulation in ferromagnet/semiconductor structures
We treat the spin injection and extraction via a ferromagnetic
metal/semiconductor Schottky barrier as a quantum scattering problem. This
enables the theory to explain a number of phenomena involving spin-dependent
current through the Schottky barrier, especially the counter-intuitive spin
polarization direction in the semiconductor due to current extraction seen in
recent experiments. A possible explanation of this phenomenon involves taking
into account the spin-dependent inelastic scattering via the bound states in
the interface region. The quantum-mechanical treatment of spin transport
through the interface is coupled with the semiclassical description of
transport in the adjoining media, in which we take into account the in-plane
spin diffusion along the interface in the planar geometry used in experiments.
The theory forms the basis of the calculation of spin-dependent current flow in
multi-terminal systems, consisting of a semiconductor channel with many
ferromagnetic contacts attached, in which the spin accumulation created by spin
injection/extraction can be efficiently sensed by electrical means. A
three-terminal system can be used as a magnetic memory cell with the bit of
information encoded in the magnetization of one of the contacts. Using five
terminals we construct a reprogrammable logic gate, in which the logic inputs
and the functionality are encoded in magnetizations of the four terminals,
while the current out of the fifth one gives a result of the operation.Comment: A review to appear in Mod. Phys. Lett.
Approximations in Fusion and Breakup reactions induced by Radioactive Beams
Some commonly used approximations for complete fusion and breakup
transmission coefficients in collisions of weakly bound projectiles at near
barrier energies are assessed. We show that they strongly depend on the adopted
classical trajectory and can be significantly improved with proper treatment of
the incident and emergent currents in the WKB approximation.Comment: 15 pages, 7 figure
Asymptotic solution for the two-body problem with constant tangencial acceleration
An analytical solution of the two body problem perturbed by a constant tangential acceleration is derived with the aid of perturbation theory. The solution, which is valid for circular and elliptic orbits with generic eccentricity, describes the instantaneous time variation of all orbital elements. A comparison with high-accuracy numerical results shows that the analytical method can be effectively applied to multiple-revolution low-thrust orbit transfer around planets and in interplanetary space with negligible error
How to determine a quantum state by measurements: The Pauli problem for a particle with arbitrary potential
The problem of reconstructing a pure quantum state ¿¿> from measurable quantities is considered for a particle moving in a one-dimensional potential V(x). Suppose that the position probability distribution ¿¿(x,t)¿2 has been measured at time t, and let it have M nodes. It is shown that after measuring the time evolved distribution at a short-time interval ¿t later, ¿¿(x,t+¿t)¿2, the set of wave functions compatible with these distributions is given by a smooth manifold M in Hilbert space. The manifold M is isomorphic to an M-dimensional torus, TM. Finally, M additional expectation values of appropriately chosen nonlocal operators fix the quantum state uniquely. The method used here is the analog of an approach that has been applied successfully to the corresponding problem for a spin system
Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier
Building upon earlier work on the relation between the dimensionless interdot
channel conductance g and the fractional Coulomb-blockade peak splitting f for
two electrostatically equivalent dots, we calculate the leading correction that
results from an interdot tunneling barrier that is not a delta-function but,
rather, has a finite height V and a nonzero width xi and can be approximated as
parabolic near its peak. We develop a new treatment of the problem for g much
less than 1 that starts from the single-particle eigenstates for the full
coupled-dot system. The finiteness of the barrier leads to a small upward shift
of the f-versus-g curve at small values of g. The shift is a consequence of the
fact that the tunneling matrix elements vary exponentially with the energies of
the states connected. Therefore, when g is small, it can pay to tunnel to
intermediate states with single-particle energies above the barrier height V.
The correction to the zero-width behavior does not affect agreement with recent
experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the
universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript
figures included using eps
Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy
Using Gaussian wave packet solutions, we examine how the kinetic energy is
distributed in time-dependent solutions of the Schrodinger equation
corresponding to the cases of a free particle, a particle undergoing uniform
acceleration, a particle in a harmonic oscillator potential, and a system
corresponding to an unstable equilibrium. We find, for specific choices of
initial parameters, that as much as 90% of the kinetic energy can be localized
(at least conceptually) in the `front half' of such Gaussian wave packets, and
we visualize these effects.Comment: 22 pages, RevTeX, four .eps figures, to appear in Found. Phys. Lett.
Vol. 17, Dec. 200
Correct quantum chemistry in a minimal basis from effective Hamiltonians
We describe how to create ab-initio effective Hamiltonians that qualitatively
describe correct chemistry even when used with a minimal basis. The
Hamiltonians are obtained by folding correlation down from a large parent basis
into a small, or minimal, target basis, using the machinery of canonical
transformations. We demonstrate the quality of these effective Hamiltonians to
correctly capture a wide range of excited states in water, nitrogen, and
ethylene, and to describe ground and excited state bond-breaking in nitrogen
and the chromium dimer, all in small or minimal basis sets
Quantum-Classical Transition of the Escape Rate of a Uniaxial Spin System in an Arbitrarily Directed Field
The escape rate \Gamma of the large-spin model described by the Hamiltonian H
= -DS_z^2 - H_zS_z - H_xS_x is investigated with the help of the mapping onto a
particle moving in a double-well potential U(x). The transition-state method
yields in the moderate-damping case as a Boltzmann average of the
quantum transition probabilities. We have shown that the transition from the
classical to quantum regimes with lowering temperature is of the first order
(d\Gamma/dT discontinuous at the transition temperature T_0) for h_x below the
phase boundary line h_x=h_{xc}(h_z), where h_{x,z}\equiv H_{x,z}/(2SD), and of
the second order above this line. In the unbiased case (H_z=0) the result is
h_{xc}(0)=1/4, i.e., one fourth of the metastability boundary h_{xm}=1, at
which the barrier disappears. In the strongly biased limit \delta\equiv 1-h_z
<< 1, one has h_{xc} \cong (2/3)^{3/4}(\sqrt{3}-\sqrt{2})\delta^{3/2}\cong
0.2345 \delta^{3/2}, which is about one half of the boundary value h_{xm} \cong
(2\delta/3)^{3/2} \cong 0.5443 \delta^{3/2}.The latter case is relevant for
experiments on small magnetic particles, where the barrier should be lowered to
achieve measurable quantum escape rates.Comment: 17 PR pages, 16 figures; published versio
Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system
We analytically compute the long-term orbital variations of a test particle
orbiting a central body acted upon by an incident monochromatic plane
gravitational wave. We assume that the characteristic size of the perturbed
two-body system is much smaller than the wavelength of the wave. Moreover, we
also suppose that the wave's frequency is much smaller than the particle's
orbital one. We make neither a priori assumptions about the direction of the
wavevector nor on the orbital geometry of the planet. We find that, while the
semi-major axis is left unaffected, the eccentricity, the inclination, the
longitude of the ascending node, the longitude of pericenter and the mean
anomaly undergo non-vanishing long-term changes. They are not secular trends
because of the slow modulation introduced by the tidal matrix coefficients and
by the orbital elements themselves. They could be useful to indepenedently
constrain the ultra-low frequency waves which may have been indirectly detected
in the BICEP2 experiment. Our calculation holds, in general, for any
gravitationally bound two-body system whose characteristic frequency is much
larger than the frequency of the external wave. It is also valid for a generic
perturbation of tidal type with constant coefficients over timescales of the
order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the
referees include
- …