623 research outputs found

    Relativistic Proton Production During the 14 July 2000 Solar Event: The Case for Multiple Source Mechanisms

    Full text link
    Protons accelerated to relativistic energies by transient solar and interplanetary phenomena caused a ground-level cosmic ray enhancement on 14 July 2000, Bastille Day. Near-Earth spacecraft measured the proton flux directly and ground-based observatories measured the secondary responses to higher energy protons. We have modelled the arrival of these relativistic protons at Earth using a technique which deduces the spectrum, arrival direction and anisotropy of the high-energy protons that produce increased responses in neutron monitors. To investigate the acceleration processes involved we have employed theoretical shock and stochastic acceleration spectral forms in our fits to spacecraft and neutron monitor data. During the rising phase of the event (10:45 UT and 10:50 UT) we find that the spectrum between 140 MeV and 4 GeV is best fitted by a shock acceleration spectrum. In contrast, the spectrum at the peak (10:55 UT and 11:00 UT) and in the declining phase (11:40 UT) is best fitted with a stochastic acceleration spectrum. We propose that at least two acceleration processes were responsible for the production of relativistic protons during the Bastille Day solar event: (1) protons were accelerated to relativistic energies by a shock, presumably a coronal mass ejection (CME). (2) protons were also accelerated to relativistic energies by stochastic processes initiated by magnetohydrodynamic (MHD) turbulence.Comment: 38 pages, 9 figures, accepted for publication in the Astrophysical Journal, January, 200

    Assigning Collaborative Learning Pairs Based on Personality Testing

    Get PDF
    This study, conducted at Buford Middle School, examined the effects of using personality tests to create student learning pairs. Four seventh grade classes were examined. The content, instruction, and instructor were the same for all classes. Three of four classes had students grouped in learning pairs based on the results of personality tests. The control group consisted of students grouped randomly into learning pairs. A teacher developed exam similar to the Georgia Criterion Referenced Competency Test (CRCT) for Life Science was used as the pretest and the CRCT was used as the posttest. No significant differences were found; however, specific student populations did exhibit gains in their posttest scores

    Predicting Dust Distribution in Protoplanetary Discs

    Get PDF
    We present the results of three-dimensional numerical simulations that include the effects of hydrodynamical forces and gas drag upon an evolving dusty gas disk. We briefly describe a new parallel, two phase numerical code based upon the smoothed particle hydrodynamics (SPH) technique in which the gas and dust phases are represented by two distinct types of particles. We use the code to follow the dynamical evolution of a population of grains in a gaseous protoplanetary disk in order to understand the distribution of grains of different sizes within the disk. Our ``grains'' range from metre to submillimetre in size.Comment: 2 pages, LaTeX with 1 ps figure embedded, using newpasp.sty (supplied). To appear in the proceedings of the XIXth IAP colloquium "Extrasolar Planets: Today and Tomorrow" held in Paris, France, 2003, June 30 -- July 4, ASP Conf. Se

    Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission

    Full text link
    We present results of a bright polarization-entangled photon source operating at 1552 nm via type-II collinear degenerate spontaneous parametric down-conversion in a periodically poled potassium titanyl phosphate crystal. We report a conservative inferred pair generation rate of 123,000 pairs/s/mW into collection modes. Minimization of spectral and spatial entanglement was achieved by group velocity matching the pump, signal and idler modes and through properly focusing the pump beam. By utilizing a pair of calcite beam displacers, we are able to overlap photons from adjacent down-conversion processes to obtain polarization-entanglement visibility of 94.7 +/- 1.1% with accidentals subtracted.Comment: 4 pages, 7 color figures. Revised manuscript includes the following changes: corrected pair generation rate from 44,000/s/mW pump to 123,000/s/mW pump; replaced Fig. 1b to enhance clarity; minor alterations to the title, abstract and introduction; grammatical correction

    A Nanosatellite Mission to Investigate Equatorial Ionospheric Plasma Depletions: The U. S. Air Force Academy’s FalconSat-2

    Get PDF
    An overview of the United States Air Force Academy’s (USAFA’s) FalconSat-2, a nanosatellite designed to investigate F region ionospheric plasma depletions, is presented. Instruments aboard FalconSat-2 will sample in situ plasma density and temperature at a rate of 10 Hz and 1.0 Hz, respectively. The choice of sampling rate provides for resolution of 2-10 km plasma depletions, important since plasma anisotropies of this scale size are known to disrupt Ultra High Frequency (UHF) radio transmissions. A novel sensor, the Miniature Electrostatic Analyzer (MESA), is presently under development by USAFA faculty and will be used to measure plasma density with its heritage flight aboard FalconSat-2. In addition, a traditional electron Retarding Potential Analyzer (RPA) will be used to measure plasma temperature and density, the latter of which will be used to validate the MESA performance on orbit. The mission’s scientific objectives require a low altitude (300-500 km), medium inclination (45 degrees) orbit; these requirements, coupled with the availability of launch opportunities through the Space Shuttle’s Hitchhiker Program, provide motivation to develop the FalconSat-2 mission for launch via the Hitchhiker’s Palette Ejection System (PES). The satellite bus design consists of a mixture of Commercial Off-The-Shelf (COTS) hardware and original design by USAFA cadets and faculty. Details of the mission and satellite design, as well as key challenges uniquely pertinent to undergraduate satellite programs, are addressed

    Migrating to Cloud-Native Architectures Using Microservices: An Experience Report

    Full text link
    Migration to the cloud has been a popular topic in industry and academia in recent years. Despite many benefits that the cloud presents, such as high availability and scalability, most of the on-premise application architectures are not ready to fully exploit the benefits of this environment, and adapting them to this environment is a non-trivial task. Microservices have appeared recently as novel architectural styles that are native to the cloud. These cloud-native architectures can facilitate migrating on-premise architectures to fully benefit from the cloud environments because non-functional attributes, like scalability, are inherent in this style. The existing approaches on cloud migration does not mostly consider cloud-native architectures as their first-class citizens. As a result, the final product may not meet its primary drivers for migration. In this paper, we intend to report our experience and lessons learned in an ongoing project on migrating a monolithic on-premise software architecture to microservices. We concluded that microservices is not a one-fit-all solution as it introduces new complexities to the system, and many factors, such as distribution complexities, should be considered before adopting this style. However, if adopted in a context that needs high flexibility in terms of scalability and availability, it can deliver its promised benefits

    A stacking-fault based microscopic model for platelets in diamond

    Get PDF
    We propose a new microscopic model for the {001}\{001\} planar defects in diamond commonly called platelets. This model is based on the formation of a metastable stacking fault, which can occur because of the ability of carbon to stabilize in different bonding configurations. In our model the core of the planar defect is basically a double layer of three-fold coordinated sp2sp^2 carbon atoms embedded in the common sp3sp^3 diamond structure. The properties of the model were determined using {\it ab initio} total energy calculations. All significant experimental signatures attributed to the platelets, namely, the lattice displacement along the [001][001] direction, the asymmetry between the [110][110] and the [11ˉ0][1\bar{1}0] directions, the infrared absorption peak B′B^\prime, and broad luminescence lines that indicate the introduction of levels in the band gap, are naturally accounted for in our model. The model is also very appealing from the point of view of kinetics, since naturally occurring shearing processes will lead to the formation of the metastable fault.Comment: 5 pages, 4 figures. Submitted for publication on August 2nd, 200

    Cosmic ray short burst observed with the Global Muon Detector Network (GMDN) on June 22, 2015

    Get PDF
    We analyze the short cosmic ray intensity increase ("cosmic ray burst": CRB) on June 22, 2015 utilizing a global network of muon detectors and derive the global anisotropy of cosmic ray intensity and the density (i.e. the omnidirectional intensity) with 10-minute time resolution. We find that the CRB was caused by a local density maximum and an enhanced anisotropy of cosmic rays both of which appeared in association with Earth's crossing of the heliospheric current sheet (HCS). This enhanced anisotropy was normal to the HCS and consistent with a diamagnetic drift arising from the spatial gradient of cosmic ray density, which indicates that cosmic rays were drifting along the HCS from the north of Earth. We also find a significant anisotropy along the HCS, lasting a few hours after the HCS crossing, indicating that cosmic rays penetrated into the inner heliosphere along the HCS. Based on the latest geomagnetic field model, we quantitatively evaluate the reduction of the geomagnetic cut-off rigidity and the variation of the asymptotic viewing direction of cosmic rays due to a major geomagnetic storm which occurred during the CRB and conclude that the CRB is not caused by the geomagnetic storm, but by a rapid change in the cosmic ray anisotropy and density outside the magnetosphere.Comment: accepted for the publication in the Astrophysical Journa
    • …
    corecore