70 research outputs found

    Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass

    Get PDF
    Lignocellulosic biomass is an attractive carbon source for bio-based fuel and chemical production; however, its compositional heterogeneity hinders its commercial use. Since most microbes possess carbon catabolite repression (CCR), mixed sugars derived from the lignocellulose are consumed sequentially, reducing the efficacy of the overall process. To overcome this barrier, microbes that exhibit the simultaneous consumption of mixed sugars have been isolated and/or developed and evaluated for the lignocellulosic biomass utilization. Specific strains of Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis have been engineered for simultaneous glucose and xylose utilization via mutagenesis or introduction of a xylose metabolic pathway. Other microbes, such as Lactobacillus brevis, Lactobacillus buchneri, and Candida shehatae possess a relaxed CCR mechanism, showing simultaneous consumption of glucose and xylose. By exploiting CCR-negative phenotypes, various integrated processes have been developed that incorporate both enzyme hydrolysis of lignocellulosic material and mixed sugar fermentation, thereby enabling greater productivity and fermentation efficacy

    Impact of food processing and detoxification treatments on mycotoxin contamination

    Get PDF

    Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde.

    No full text
    When cells of Klebsiella pneumoniae NRRL B-199 (ATCC 8724) were grown aerobically on a rich glycerol medium and then suspended in buffer supplemented with semicarbazide and glycerol, aerobic conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA) ensued. Depending on conditions, 0.38 to 0.67 g of 3-HPA were formed per gram of glycerol consumed. This means that up to 83.8% of the carbon invested as glycerol could potentially be recovered as the target product, 3-HPA. Production of 3-HPA was sensitive to the age of cells harvested for resuspension and was nonexistent if cells were cultivated on glucose instead of glycerol as the sole carbon source. Compared with 24- and 72-h cells, 48-h cells produced 3-HPA at the highest rate and with the greatest yield. The cell biomass concentration present during the fermentation was never particularly critical to the 3-HPA yield, but initial fermentation rates and 3-HPA accumulation displayed a linear dependence on biomass concentration that faded when biomass exceeded 3 g/liter. Fermentation performance was a function of temperature, and an optimum initial specific 3-HPA productivity occurred at 32 degrees C, although the overall 3-HPA yield increased continuously within the 25 to 37 degrees C range studied. The pH optimum based on fermentation rate was different from that based on overall yield; 8 versus 7, respectively. Initial glycerol concentrations in the 20 to 50 g/liter range optimized initial 3-HPA productivity and yield

    Selection and Evaluation of Microorganisms for Biocontrol of Fusarium Head Blight of Wheat Incited by \u3ci\u3eGibberella zeae\u3c/i\u3e

    Get PDF
    Gibberella zeae incites Fusarium head blight (FHB), a devastating disease that causes extensive yield and quality losses to wheat and barley. Of over 700 microbial strains obtained from wheat anthers, 54 were able to utilize tartaric acid as a carbon source when the compound was supplied as choline bitartrate in liquid culture. Four tartaric acid–utilizing and three nonutilizing strains reduced FHB in initial tests and were selected for further assays. Antagonists were effective against three different isolates of G. zeae when single wheat florets were inoculated with pathogen and antagonist inoculum. All seven antagonists increased 100-kernel weight when applied simultaneously with G. zeae isolate Z3639 (P \u3c 0.05). Bacillus strains AS 43.3 and AS 43.4 and Cryptococcus strain OH 182.9 reduced disease severity by \u3e77, 93, and 56%, respectively. Five antagonists increased 100-kernel weight of plants inoculated with G. zeae isolate DAOM 180378. All antagonists except one increased 100-kernel weight, and four of seven antagonists reduced disease severity (P \u3c 0.05) when tested against G. zeae isolate Fg-9-96. In spray-inoculation experiments, Bacillus strains AS 43.3 and AS 43.4 and Cryptococcus strains OH 71.4 and OH 182.9 reduced disease severity, regardless of the sequence, timing, and concentration of inoculum application (P \u3c 0.05), though 100-kernel weight did not always increase when antagonists were applied 4 h after inoculum of G. zeae. Overall, 4 of 54 isolates that utilized tartaric acid in vitro were effective against G. zeae versus only 3 of 170 isolates tested that did not utilize tartaric acid (P \u3c 0.05, X-square test of goodness of fit), demonstrating the potential benefit of prescreening candidate antagonists of FHB for their ability to utilize tartaric acid. Biological control shows promise as part of an integrated pest management program for managing FHB
    corecore