93 research outputs found

    Measurement of nuclear effects in neutrino-argon interactions using generalized kinematic imbalance variables with the MicroBooNE detector

    Get PDF
    We present a set of new generalized kinematic imbalance variables that can be measured in neutrino scattering. These variables extend previous measurements of kinematic imbalance on the transverse plane and are more sensitive to modeling of nuclear effects. We demonstrate the enhanced power of these variables using simulation and then use the MicroBooNE detector to measure them for the first time. We report flux-integrated single- and double-differential measurements of charged-current muon neutrino scattering on argon using a topology with one muon and one proton in the final state as a function of these novel kinematic imbalance variables. These measurements allow us to demonstrate that the treatment of charged current quasielastic interactions in genie version 2 is inadequate to describe data. Further, they reveal tensions with more modern generator predictions particularly in regions of phase space where final state interactions are important

    First Measurement of Differential Charged Current Quasielasticlike νμ-Argon Scattering Cross Sections with the MicroBooNE Detector

    Get PDF
    We report on the first measurement of flux-integrated single differential cross sections for chargedcurrent (CC) muon neutrino (νμ) scattering on argon with a muon and a proton in the final state, 40Ar ðνμ; μpÞX. The measurement was carried out using the Booster Neutrino Beam at Fermi National Accelerator Laboratory and the MicroBooNE liquid argon time projection chamber detector with an exposure of 4.59 × 1019 protons on target. Events are selected to enhance the contribution of CC quasielastic (CCQE) interactions. The data are reported in terms of a total cross section as well as single differential cross sections in final state muon and proton kinematics.We measure the integrated per-nucleus CCQE-like cross section (i.e., for interactions leading to a muon, one proton, and no pions above detection threshold) of ð4.93 0.76stat 1.29sysÞ × 10−38 cm2, in good agreement with theoretical calculations. The single differential cross sections are also in overall good agreement with theoretical predictions, except at very forward muon scattering angles that correspond to low-momentum-transfer events.United States Department of Energy (DOE)National Science Foundation (NSF)Swiss National Science Foundation (SNSF)Science and Technology Facilities Council (STFC), part of the United Kingdom Research and InnovationRoyal Society of LondonAlbert Einstein Center for Fundamental Physics, Bern, SwitzerlandAzrieli FoundationZuckerman STEM Leadership ProgramIsrael Science FoundationVisiting Scholars Award Program of the Universities Research AssociationDE-AC02-07CH1135

    Effect of Body Mass Index on work related musculoskeletal discomfort and occupational stress of computer workers in a developed ergonomic setup

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Work urgency, accuracy and demands compel the computer professionals to spend longer hours before computers without giving importance to their health, especially body weight. Increase of body weight leads to improper Body Mass Index (BMI) may aggravate work related musculoskeletal discomfort and occupational-psychosocial stress. The objective of the study was to find out the effect of BMI on work related musculoskeletal discomforts and occupational stress of computer workers in a developed ergonomic setup.</p> <p>Methods</p> <p>A descriptive inferential study has been taken to analyze the effect of BMI on work related musculoskeletal discomfort and occupational-psychosocial stress. A total of 100 computer workers, aged 25-35 years randomly selected on convenience from software and BPO companies in Bangalore city, India for the participation in this study. BMI was calculated by taking the ratio of the subject's height (in meter) and weight (in kilogram). Work related musculoskeletal discomfort and occupational stress of the subjects was assessed by Cornell University's musculoskeletal discomfort questionnaire (CMDQ) and occupational stress index (OSI) respectively as well as a relationship was checked with their BMI.</p> <p>Results</p> <p>A significant association (p < 0.001) was seen among high BMI subjects with their increase scores of musculoskeletal discomfort and occupational stress.</p> <p>Conclusion</p> <p>From this study, it has been concluded that, there is a significant effect of BMI in increasing of work related musculoskeletal discomfort and occupational-psychosocial stress among computer workers in a developed ergonomic setup.</p
    • …
    corecore