56,039 research outputs found
Stable boundary conditions for Cartesian grid calculations
The inviscid Euler equations in complicated geometries are solved using a Cartesian grid. This requires solid wall boundary conditions in the irregular grid cells near the boundary. Since these cells may be orders of magnitude smaller than the regular grid cells, stability is a primary concern. An approach to this problem is presented and its use is illustrated
Cities in fiction: Perambulations with John Berger
This paper explores selected novels by John Berger in which cities play a central role. These cities are places, partially real and partially imagined, where memory, hope, and despair intersect. My reading of the novels enables me to trace important themes in recent discourses on the nature of contemporary capitalism, including notions of resistance and universality. I also show how Berger?s work points to a writing that can break free from the curious capacity of capitalism to absorb and feed of its critique
The Prompt Gamma-Ray and Afterglow Energies of Short-Duration Gamma-Ray Bursts
I present an analysis of the gamma-ray and afterglow energies of the complete
sample of 17 short duration GRBs with prompt X-ray follow-up. I find that 80%
of the bursts exhibit a linear correlation between their gamma-ray fluence and
the afterglow X-ray flux normalized to t=1 d, a proxy for the kinetic energy of
the blast wave ($F_{X,1}~F_{gamma}^1.01). An even tighter correlation is
evident between E_{gamma,iso} and L_{X,1} for the subset of 13 bursts with
measured or constrained redshifts. The remaining 20% of the bursts have values
of F_{X,1}/F_{gamma} that are suppressed by about three orders of magnitude,
likely because of low circumburst densities (Nakar 2007). These results have
several important implications: (i) The X-ray luminosity is generally a robust
proxy for the blast wave kinetic energy, indicating nu_X>nu_c and hence a
circumburst density n>0.05 cm^{-3}; (ii) most short GRBs have a narrow range of
gamma-ray efficiency, with ~0.85 and a spread of 0.14 dex; and
(iii) the isotropic-equivalent energies span 10^{48}-10^{52} erg. Furthermore,
I find tentative evidence for jet collimation in the two bursts with the
highest E_{gamma,iso}, perhaps indicative of the same inverse correlation that
leads to a narrow distribution of true energies in long GRBs. I find no clear
evidence for a relation between the overall energy release and host galaxy
type, but a positive correlation with duration may be present, albeit with a
large scatter. Finally, I note that the outlier fraction of 20% is similar to
the proposed fraction of short GRBs from dynamically-formed neutron star
binaries in globular clusters. This scenario may naturally explain the
bimodality of the F_{X,1}/F_{gamma} distribution and the low circumburst
densities without invoking speculative kick velocities of several hundred km/s.Comment: Submitted to ApJ; 9 pages, 2 figures, 1 tabl
Energy, contact, and density profiles of one-dimensional fermions in a harmonic trap via non-uniform lattice Monte Carlo
We determine the ground-state energy and Tan's contact of attractively
interacting few-fermion systems in a one-dimensional harmonic trap, for a range
of couplings and particle numbers. Complementing those results, we show the
corresponding density profiles. The calculations were performed with a new
lattice Monte Carlo approach based on a non-uniform discretization of space,
defined via Gauss-Hermite quadrature points and weights. This particular
coordinate basis is natural for systems in harmonic traps, and can be
generalized to traps of other shapes. In all cases, it yields a
position-dependent coupling and a corresponding non-uniform
Hubbard-Stratonovich transformation. The resulting path integral is performed
with hybrid Monte Carlo as a proof of principle for calculations at finite
temperature and in higher dimensions. We present results for N=4,...,20
particles (although the method can be extended beyond that) to cover the range
from few- to many-particle systems. This method is also exact up to statistical
and systematic uncertainties, which we account for -- and thus also represents
the first ab initio calculation of this system, providing a benchmark for other
methods and a prediction for ultracold-atom experiments.Comment: 13 pages, 10 figures; including supplemental materia
Optimisation of patch distribution strategies for AMR applications
As core counts increase in the world's most powerful supercomputers, applications are becoming limited not only by computational power, but also by data availability. In the race to exascale, efficient and effective communication policies are key to achieving optimal application performance. Applications using adaptive mesh refinement (AMR) trade off communication for computational load balancing, to enable the focused computation of specific areas of interest. This class of application is particularly susceptible to the communication performance of the underlying architectures, and are inherently difficult to scale efficiently. In this paper we present a study of the effect of patch distribution strategies on the scalability of an AMR code. We demonstrate the significance of patch placement on communication overheads, and by balancing the computation and communication costs of patches, we develop a scheme to optimise performance of a specific, industry-strength, benchmark application
325 MHz VLA Observations of Ultracool Dwarfs TVLM 513-46546 and 2MASS J0036+1821104
We present 325 MHz (90 cm wavelength) radio observations of ultracool dwarfs
TVLM 513-46546 and 2MASS J0036+1821104 using the Very Large Array (VLA) in June
2007. Ultracool dwarfs are expected to be undetectable at radio frequencies,
yet observations at 8.5 GHz (3.5 cm) and 4.9 GHz (6 cm) of have revealed
sources with > 100 {\mu}Jy quiescent radio flux and > 1 mJy pulses coincident
with stellar rotation. The anomalous emission is likely a combination of
gyrosynchrotron and cyclotron maser processes in a long-duration, large-scale
magnetic field. Since the characteristic frequency for each process scales
directly with the magnetic field magnitude, emission at lower frequencies may
be detectable from regions with weaker field strength. We detect no significant
radio emission at 325 MHz from TVLM 513-46546 or 2MASS J0036+1821104 over
multiple stellar rotations, establishing 2.5{\sigma} total flux limits of 795
{\mu}Jy and 942 {\mu}Jy respectively. Analysis of an archival VLA 1.4 GHz
observation of 2MASS J0036+1821104 from January 2005 also yields a
non-detection at the level of < 130 {\mu}Jy . The combined radio observation
history (0.3 GHz to 8.5 GHz) for these sources suggests a continuum emission
spectrum for ultracool dwarfs which is either flat or inverted below 2-3 GHz.
Further, if the cyclotron maser instability is responsible for the pulsed radio
emission observed on some ultracool dwarfs, our low-frequency non-detections
suggest that the active region responsible for the high-frequency bursts is
confined within 2 stellar radii and driven by electron beams with energies less
than 5 keV.Comment: 11 pages, 5 figures, submitted to A
Degree Distribution of Competition-Induced Preferential Attachment Graphs
We introduce a family of one-dimensional geometric growth models, constructed
iteratively by locally optimizing the tradeoffs between two competing metrics,
and show that this family is equivalent to a family of preferential attachment
random graph models with upper cutoffs. This is the first explanation of how
preferential attachment can arise from a more basic underlying mechanism of
local competition. We rigorously determine the degree distribution for the
family of random graph models, showing that it obeys a power law up to a finite
threshold and decays exponentially above this threshold.
We also rigorously analyze a generalized version of our graph process, with
two natural parameters, one corresponding to the cutoff and the other a
``fertility'' parameter. We prove that the general model has a power-law degree
distribution up to a cutoff, and establish monotonicity of the power as a
function of the two parameters. Limiting cases of the general model include the
standard preferential attachment model without cutoff and the uniform
attachment model.Comment: 24 pages, one figure. To appear in the journal: Combinatorics,
Probability and Computing. Note, this is a long version, with complete
proofs, of the paper "Competition-Induced Preferential Attachment"
(cond-mat/0402268
Spin Precession and Avalanches
In many magnetic materials, spin dynamics at short times are dominated by
precessional motion as damping is relatively small. In the limit of no damping
and no thermal noise, we show that for a large enough initial instability, an
avalanche can transition to an ergodic phase where the state is equivalent to
one at finite temperature, often above that for ferromagnetic ordering. This
dynamical nucleation phenomenon is analyzed theoretically. For small finite
damping the high temperature growth front becomes spread out over a large
region. The implications for real materials are discussed.Comment: 4 pages 2 figure
Supersymmetry with Grand Unification
Supersymmetry (SUSY) has many well known attractions, especially in the
context of Grand Unified Theories (GUTs). SUSY stabilizes scalar mass
corrections (the hierarchy problem), greatly reduces the number of free
parameters, facilitates gauge coupling unification, and provides a plausible
candidate for cosmological dark matter. In this conference report we survey
some recent examples of progress in SUSY-GUT applications.Comment: Talk V. Barger at the Workshop on Physics at Current Accelerators and
the Supercollider, Argonne, June 1993, 15 pages + 12 PS figures included
(uuencoded), (correct author list in header) MAD/PH/78
- …