20,436 research outputs found
Ising model on the Apollonian network with node dependent interactions
This work considers an Ising model on the Apollonian network, where the
exchange constant between two neighboring spins
is a function of the degree of both spins. Using the exact
geometrical construction rule for the network, the thermodynamical and magnetic
properties are evaluated by iterating a system of discrete maps that allows for
very precise results in the thermodynamic limit. The results can be compared to
the predictions of a general framework for spins models on scale-free networks,
where the node distribution , with node dependent
interacting constants. We observe that, by increasing , the critical
behavior of the model changes, from a phase transition at for a
uniform system , to a T=0 phase transition when : in the
thermodynamic limit, the system shows no exactly critical behavior at a finite
temperature. The magnetization and magnetic susceptibility are found to present
non-critical scaling properties.Comment: 6 figures, 12 figure file
Bayesian analysis of CCDM Models
Creation of Cold Dark Matter (CCDM), in the context of Einstein Field
Equations, leads to negative creation pressure, which can be used to explain
the accelerated expansion of the Universe. In this work we tested six different
spatially flat models for matter creation using statistical tools, at light of
SN Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion
(BIC) and Bayesian Evidence (BE). These approaches allow to compare models
considering goodness of fit and number of free parameters, penalizing excess of
complexity. We find that JO model is slightly favoured over LJO/CDM
model, however, neither of these, nor model can be
discarded from the current analysis. Three other scenarios are discarded either
from poor fitting, either from excess of free parameters.Comment: 16 pages, 6 figures, 6 tables. Corrected some text and language in
new versio
Analytical approach to directed sandpile models on the Apollonian network
We investigate a set of directed sandpile models on the Apollonian network,
which are inspired on the work by Dhar and Ramaswamy (PRL \textbf{63}, 1659
(1989)) for Euclidian lattices. They are characterized by a single parameter
, that restricts the number of neighbors receiving grains from a toppling
node. Due to the geometry of the network, two and three point correlation
functions are amenable to exact treatment, leading to analytical results for
the avalanche distributions in the limit of an infinite system, for .
The exact recurrence expressions for the correlation functions are numerically
iterated to obtain results for finite size systems, when larger values of
are considered. Finally, a detailed description of the local flux properties is
provided by a multifractal scaling analysis.Comment: 7 pages in two-column format, 10 illustrations, 5 figure
Transverse instability of dunes
The simplest type of dune is the transverse one, which propagates with
invariant profile orthogonally to a fixed wind direction. Here we show
numerically and with a linear stability analysis that transverse dunes are
unstable with respect to along-axis perturbations in their profile and decay on
the bedrock into barchan dunes. Any forcing modulation amplifies exponentially
with growth rate determined by the dune turnover time. We estimate the distance
covered by a transverse dune before fully decaying into barchans and identify
the patterns produced by different types of perturbation.Comment: 4 pages, 3 figures; To appear in Physical Review Letter
Non-nequilibrium model on Apollonian networks
We investigate the Majority-Vote Model with two states () and a noise
on Apollonian networks. The main result found here is the presence of the
phase transition as a function of the noise parameter . We also studies de
effect of redirecting a fraction of the links of the network. By means of
Monte Carlo simulations, we obtained the exponent ratio ,
, and for several values of rewiring probability . The
critical noise was determined and also was calculated. The
effective dimensionality of the system was observed to be independent on ,
and the value is observed for these networks. Previous
results on the Ising model in Apollonian Networks have reported no presence of
a phase transition. Therefore, the results present here demonstrate that the
Majority-Vote Model belongs to a different universality class as the
equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure
Gravitomagnetic Moments of the Fundamental Fields
The quadratic form of the Dirac equation in a Riemann spacetime yields a
gravitational gyromagnetic ratio \kappa_S = 2 for the interaction of a Dirac
spinor with curvature. A gravitational gyromagnetic ratio \kappa_S = 1 is also
found for the interaction of a vector field with curvature. It is shown that
the Dirac equation in a curved background can be obtained as the square--root
of the corresponding vector field equation only if the gravitational
gyromagnetic ratios are properly taken into account.Comment: 8 pages, RevTeX Style, no figures, changed presentation -- now
restricted to fields of spin 0, 1/2 and 1 -- some references adde
- …