660 research outputs found

    Root canal morphology of the mandibular second premolar: a systematic review and meta- analysis

    Get PDF
    Background: The aim of this paper was to systematically review the root canal configuration (RCC) and morphology literature of the mandibular second premolar (Mn2P). Methods: Systematic research of five electronic databases was performed to identify published literature concerning the root canal configuration (RCC) of the Mn2P up through July 2020. Studies were selected according to predefined search terms and keywords inclusion criteria: “root canal configuration”, “root canal system”, “root canal morphology”, “mandibular second premolar”, “mandibular premolars”, “morphology” and “anatomy”. Further possible studies were identified by cross-referencing and screening the bibliographies of the selected articles. Results: From 1622 retrieved studies, 44 studies investigating the internal morphology of 17,839 Mn2Ps were included. Most examined Mn2Ps were single-rooted (89.5–100%); two-rooted (0.1–8%) and three-rooted (0.1–3.5%) Mn2Ps at lower frequency. Most frequent RCCs reported were 1–1–1/1 (55.3–99.6%) followed by 1–1–2/2 (0.5–57%) and 2–2–2/2 (0.6–18%). The meta-analysis of seven studies demonstrated that a significantly higher number of RCC type 1–2–1/1 (OR [95%CI] = 2.05 [1.27, 3.33]) and 2–2–2/2 (OR [95%CI] = 2.32 [0.65, 8.63]) were observed in male than in female patients. Conclusions: Different RCC research methods have been reported. Whereas clearing and radiographs were com- monly used in the past, CBCT has been prevalent in recent years. A globally high frequency of a 1–1–1/1 RCC in the Mn2P has been reported. Nevertheless, the probability that different, more complicated RCCs can appear in Mn2Ps should not be underestimated and, thus, should be taken into consideration when making decisions during an endo- dontic treatment

    Altitudinal Shifts of the Native and Introduced Flora of California in the Context of 20th-Century Warming

    Get PDF
    Aim: The differential responses of plant species to climate change are of great interest and grave concern for scientists and conservationists. One underexploited resource for better understanding these changes are the records held by herbaria. Using these records to assess the responses of different groups of species across the entire flora of California, we sought to quantify the magnitude of species elevational shifts, to measure differences in shifts among functional groups and between native and introduced species, and to evaluate whether these shifts were related to the conservation of thermal niches. Location: California. Methods: To characterize these shifts in California, we used 681,609 georeferenced herbarium records to estimate mean shifts in elevational and climatic space of 4426 plant taxa.We developed and employed a statistical method to robustly analyse the data represented in these records. Results: We found that 15% of all taxa in California have ranges that have shifted upward over the past century. There are significant differences between range shifts of taxa with different naturalization statuses: 12% of endemic taxa show significant upward range shifts, while a greater proportion (27%) of introduced taxa have shifted upward.We found significant differences between the proportion of significant range shifts across taxa with different seed sizes, but did not find evidence for differences in shift based on life-form (annual versus perennial, herbaceous versus woody). Main conclusions: Our analyses suggest that introduced species have disproportionately expanded their ranges upward in elevation over the past century when compared with native species.While these shifts in introduced species may not be exclusively driven by climate, they highlight the importance of considering the interacting factors of climate-driven range shifts and invasion to understand how floras are responding in the face of anthropogenic change

    Droughts and the ecological future of tropical savanna vegetation

    Get PDF
    1. Climate change is expected to lead to more frequent, intense and longer droughts in the future, with major implications for ecosystem processes and human livelihoods. The impacts of such droughts are already evident, with vegetation dieback reported from a range of ecosystems, including savannas, in recent years. 2. Most of our insights into the mechanisms governing vegetation drought responses have come from forests and temperate grasslands, while responses of savannas have received less attention. Because the two life forms that dominate savannas—C3 trees and C4 grasses—respond differently to the same environmental controls, savanna responses to droughts can differ from those of forests and grasslands. 3. Drought‐driven mortality of savanna vegetation is not readily predicted by just plant drought‐tolerance traits alone, but is the net outcome of multiple factors, including drought‐avoidance strategies, landscape and neighborhood context, and impacts of past and current stressors including fire, herbivory and inter‐life form competition. 4. Many savannas currently appear to have the capacity to recover from moderate to severe short‐term droughts, although recovery times can be substantial. Factors facilitating recovery include the resprouting ability of vegetation, enhanced flowering and seeding and post‐drought amelioration of herbivory and fire. Future increases in drought severity, length and frequency can interrupt recovery trajectories and lead to compositional shifts, and thus pose substantial threats, particularly to arid and semi‐arid savannas. 5. Synthesis. Our understanding of, and ability to predict, savanna drought responses is currently limited by availability of relevant data, and there is an urgent need for campaigns quantifying drought‐survival traits across diverse savannas. Importantly, these campaigns must move beyond reliance on a limited set of plant functional traits to identifying suites of physiological, morphological, anatomical and structural traits or “syndromes” that encapsulate both avoidance and tolerance strategies. There is also a critical need for a global network of long‐term savanna monitoring sites as these can provide key insights into factors influencing both resistance and resilience of different savannas to droughts. Such efforts, coupled with site‐specific rainfall manipulation experiments that characterize plant trait–drought response relationships, and modelling efforts, will enable a more comprehensive understanding of savanna drought responses

    Surface structures of approximant phases in the Al-Pd-Mn system

    Get PDF
    We present a study of the surface of the Οâ€Č-Al-Pd-Mn approximant phase based upon scanning tunneling microscopy and low-energy electron diffraction. Several structures are observed on two different samples grown either by the Bridgman technique or by a self-flux method, and which contain various degrees of disorder. We also describe some other complex crystalline phases that are sometimes observed on the fivefold surface of Al-Pd-Mn quasicrystalline samples after the sputter-annealing cleaning process under ultrahigh vacuum conditions. This includes the T approximant phase resulting from surface decomposition after a high-temperature annealing

    Comparing Model Representations of Physiological Limits on Transpiration at a Semi-arid Ponderosa Pine Site

    Get PDF
    Mechanistic representations of biogeochemical processes in ecosystem models are rapidly advancing, requiring advancements in model evaluation approaches. Here we quantify multiple aspects of model functional performance to evaluate improved process representations in ecosystem models. We compare semi-empirical stomatal models with hydraulic constraints against more mechanistic representations of stomatal and hydraulic functioning at a semi-arid pine site using a suite of metrics and analytical tools. We find that models generally perform similarly under unstressed conditions, but performance diverges under atmospheric and soil drought. The more empirical models better capture synergistic information flows between soil water potential and vapor pressure deficit to transpiration, while the more mechanistic models are overly deterministic. Although models can be parameterized to yield similar functional performance, alternate parameterizations could not overcome structural model constraints that underestimate the unique information contained in soil water potential about transpiration. Additionally, both multilayer canopy and big-leaf models were unable to capture the magnitude of canopy temperature divergence from air temperature, and we demonstrate that errors in leaf temperature can propagate to considerable error in simulated transpiration. This study demonstrates the value of merging underutilized observational data streams with emerging analytical tools to characterize ecosystem function and discriminate among model process representations

    Vegetation demographics in Earth System Models: A review of progress and priorities

    Get PDF
    Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication

    <sup>18</sup>F-FDG-PET/CT to Detect Pathological Complete Response After Neoadjuvant Treatment in Patients with Cancer of the Esophagus or Gastroesophageal Junction:Accuracy and Long-Term Implications

    Get PDF
    Purpose : The curative strategy for patients with esophageal cancer without distant metastases consists of esophagectomy with preceding chemo(radio)therapy (CRT). In 10–40% of patients treated with CRT, no viable tumor is detectable in the resection specimen (pathological complete response (pCR)). This study aims to define the clinical outcomes of patients with a pCR and to assess the accuracy of post-CRT FDG-PET/CT in the detection of a pCR. Methods: Four hundred sixty-three patients with cancer of the esophagus or gastroesophageal junction who underwent esophageal resection after CRT between 1994 and 2013 were included. Patients were categorized as pathological complete responders or noncomplete responders. Standardized uptake value (SUV) ratios of 135 post-CRT FDG-PET/CTs were calculated and compared with the pathological findings in the corresponding resection specimens. Results: Of the 463 included patients, 85 (18.4%) patients had a pCR. During follow-up, 25 (29.4%) of these 85 patients developed recurrent disease. Both 5-year disease-free survival (5y-DFS) and 5-year overall survival (5y-OS) were significantly higher in complete responders compared to noncomplete responders (5y-DFS 69.6% vs. 44.2%; P = 0.001 and 5y-OS 66.5% vs. 43.7%; P = 0.001). Not pCR, but only pN0 was identified as an independent predictor of (disease-free) survival. Conclusion: Patients with a pCR have a higher probability of survival compared to noncomplete responders. One third of patients with a pCR do develop recurrent disease, and pCR can therefore not be equated with cure. FDG-PET/CT was inaccurate to predict pCR and therefore cannot be used as a sole diagnostic tool to predict pCR after CRT for esophageal cancer.</p
    • 

    corecore