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Abstract 

Numerous current efforts seek to improve the representation of ecosystem ecology and 

vegetation demographic processes within Earth System Models (ESMs). These developments 

are widely viewed as an important step in developing greater realism in predictions of future 

ecosystem states and fluxes. Increased realism, however, leads to increased model 

complexity, with new features raising a suite of ecological questions that require empirical 

constraints. Here, we review the developments that permit the representation of plant 

demographics in ESMs, and identify issues raised by these developments that highlight 

important gaps in ecological understanding. These issues inevitably translate into uncertainty 

in model projections but also allow models to be applied to new processes and questions 

concerning the dynamics of real-world ecosystems. We argue that stronger and more 

mailto:rfisher@ucar.edu
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innovative connections to data, across the range of scales considered, are required to address 

these gaps in understanding.  The development of first-generation land surface models as a 

unifying framework for ecophysiological understanding stimulated much research into plant 

physiological traits and gas exchange. Constraining predictions at ecologically relevant 

spatial and temporal scales will require a similar investment of effort and intensified inter-

disciplinary communication.   

Introduction 

Ecological demographic processes govern terrestrial vegetation structure, and vegetation 

structure influences climatically important fluxes of carbon, energy, and water (Bonan, 

2008). Better representation of vegetation demography in Earth System Models (ESMs) has 

repeatedly been identified as a critical step towards a more realistic representation of 

biologically mediated feedbacks in modeling future climates (Moorcroft et al., 2001, 2006; 

Purves and Pacala 2008; Evans 2012; Thomas et al., 2015). Model-data comparison is greatly 

assisted by increasingly realistic model abstraction methods. Similarly, a greater range of data 

can be used for parameterization and initialization, and in some cases, models improvements 

can be directly linked to better simulation of biodiversity (Levine et al. 2016). These 

improvements are traded off against increasing complexity and computation expense.    

Dynamic global vegetation models (DGVMs) are the components of land surface models 

(LSMs) that try to predict the global distribution of vegetation types from physiological 

principles (Foley et al., 1996; Cao & Woodward, 1998; Sitch et al., 2003; Woodward & 

Lomas, 2004). Traditionally, DGVMs represent plant communities using a single area-

averaged representation of each plant functional type (PFT) for each climatic grid cell. This 

simplification and the resulting computational efficiency has allowed first generation 

DGVMs (hereafter g1DVMs) to be broadly adopted within ESMs (Cox, 2001; Bonan et al., 
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2003; Krinner et al., 2005; Arora & Boer 2010).  

This level of abstraction means, however, that g1DVMs do not capture many demographic 

processes considered important for the accurate prediction of ecosystem composition and 

function, including canopy gap formation, vertical light competition, competitive exclusion, 

and successional recovery from disturbance (Hurtt et al., 1998; Moorcroft et al., 2001; Smith 

et al., 2001; Feeley et al., 2007; Stark et al., 2012).  

 

In contrast, forest gap, (Bugmann et al., 2001; Dietze & Latimer 2011) and ‘individual based’ 

models (IBMs) (Smith et al., 2001; Sato et al., 2007; Fyllas et al., 2014; Shuman et al., 2014; 

Christoffersen et al., 2016; Fischer et al., 2016) represent vegetation at the level of individual 

plants. IBMs represent spatial variability in the light environment and thereby simulate 

competitive exclusion, succession, and coexistence of tree species (Pacala et al., 1996; Smith 

et al. 2001). Simulation of individual trees in a spatially explicit, stochastic framework incurs 

a notable computational penalty, however. These challenges are typically addressed by 

limiting the spatial scope (Sakschewski et al., 2015), temporal frequency, and/or reduced 

sampling of the potential ensemble of model outcomes (Sato et al., 2007; Smith et al., 2014).  

 

As a compromise between the abstraction of g1DVMs and the computational expense of 

IBMs, many groups have developed ‘cohort-based’ models, whereby individual plants with 

similar properties (size, age, functional type) are grouped together (Hurtt et al., 1998, 

Moorcroft et al., 2001, Lischke et al., 2006; Medvigy et al., 2009; Haverd et al. 2013; 

Scherstjanoi et al., 2013; Smith et al., 2014; Weng et al., 2015). The cohort approach retains 

the dynamics of IBMs, with reduced computational cost, but removes stochastic processes 

that can enhance the representation of functional diversity (Fisher et al., 2010). 
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Herein we refer to both individual and cohort-based models as ‘vegetation demographic 

models’ (VDMs). We define VDMs as a special class of DGVM, which include 

representation/tracking of multiple size-classes or individuals of the same PFT, which can 

encounter multiple light environments within a single climatic grid cell. We adopt this 

terminology since both individual and cohort models present similar opportunities and 

challenges as they are implemented within ESMs.  

 

As in first-generation models the distributions of PFTs, and their associated traits, can be 

geographically and temporally 'filtered' in VDMs via the mechanisms of competition, 

differential recruitment and mortality.  In VDMs, however, disturbance history and vertical 

light competition modulate interactions between plant traits and resource acquisition. Further, 

it is typical (but not universally the case) that a priori constraints on distribution (climate 

envelopes) are removed (Fisher et al., 2015).  Vegetation structure and distribution thus 

become entirely emergent model properties of ascribed plant functional traits and their 

interactions with abiotic environmental conditions.  In addition, VDMs provide critical new 

opportunities for data-model integration owing to their higher fidelity representation of the 

structure of vegetation stands, as we will discuss in this review. 

 

Several efforts to embed VDMs within ESMs are now coming to fruition, but understanding 

of their provenance, function and uncertainties remains specialized knowledge even within 

the land surface modeling community. In this review, we focus on those models currently 

resident in ESMs or regional atmospheric models.  Many ‘offline’ VDMs exist, with novel 

and beneficial approaches (e.g. Scheiter et al., 2012; Haverd et al. 2013; Pavlick et al., 2013; 

Fyllas et al., 2014; Scherstjanoi et al., 2014; Sakschewski et al., 2015). We focus on the 
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particular challenges of large-scale implementations, coupled to atmospheric models, since 

this process imposes important boundary conditions on VDM functionality. For example, 

ESMs typically require land-atmosphere fluxes of carbon, water and energy at hourly or sub-

hourly timescales, and these must be in exact balance to prevent erroneous model drift. 

Implementation must be global in principle, imposing computational restrictions, and many 

other processes (hydrology, snow, lakes, urban areas, biogeochemical cycles, land-use 

change) must be simulated consistently. 

 

Underpinning the implementation of VDMs in LSMs are a set of processes whose 

representations require significant modification (compared to first-generation DGVMs) to 

provide the appropriate function in the context of multi-layer, multi-PFT ecosystems. These 

include the partitioning of light and other resources between individuals or cohorts, the 

representation of ecophysiological processes involved in carbon and nutrient uptake, 

allocation, mortality and recruitment within the newly resolved model dimensions, and the 

interpretations of land use, fire and other disturbances. These new model structures pose 

several research challenges and opportunities.  In this review, which is the first to bring 

together expertise from such a diverse range of VDM groups, we: 

i) summarize the state-of-the-art of VDM development, 

ii) discuss model features specific to VDMs and alternative assumptions currently used,  

iii) detail datasets available for validation and benchmarking, and  

iv) outline future code development and data collection strategies needed to better constrain 

these new model elements.   

 

We hope to both motivate research aimed at informing the representation of plant ecology in 

ESMs and highlight gaps in basic ecological theory that are now at the front line of 
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simulating the biosphere’s role in the climate system. We argue that it is too early to assert 

that any one methodology is the ideal representation of plant demographics to use within 

ESMs. Rather, until relevant data and knowledge gaps are filled through concerted empirical 

and model-based research, we expect that an ensemble of techniques will allow for more 

robust predictions of likely trajectories of vegetation structural changes, their impacts on 

biogeochemistry and climate feedbacks (Sanderson et al., 2015; Koven et al., 2015).  

 

Progress to date 

In this section we detail the ongoing progress of implementing vegetation demographic 

models (VDMs) inside ESMs on a loose continuum from individual- to cohort-based 

approaches.   

 

SEIB-DGVM 

The SEIB-DGVM (Spatially-Explicit Individual-Based Dynamic Global Vegetation Model, 

http://seib-dgvm.com) is an IBM, representing variability of light in both the vertical and 

horizontal dimensions. Following initial implementation at a global scale (Sato et al., 2007), 

SEIB-DGVM has been modified to represent plant population dynamics and biogeochemistry 

in south-east Asia (Sato 2009), Africa (Sato & Ise 2012), and Siberia (Sato et al., 2010).  

 

SEIB simulates a 30m x 30m patch of forest, where individual trees establish, compete, and 

die. Each tree is composed of a cylindrical crown and trunk, plus fine roots. Tree crowns are 

horizontally sliced into 10-cm deep 'disks,' for which photosynthesis is calculated separately 

with a daily physiological timestep.  Leaf area is updated daily by turnover and growth. 

Crowns of different trees do not occupy the same physical space. To represent spatial 

plasticity, crowns are able to grow a given distance horizontally in response to light 
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availability each year.  

SEIB-DGVM is implemented within the MIROC-ESM (Watanabe et al., 2011).  In the ESM 

context, SEIB-DGVM is run once for each grid cell, representing one particular integration of 

the stochastic forest, to allow global applications.  

 

LPJ-GUESS 

The Lund-Potsdam-Jena General Ecosystem Simulator (Smith et al., 2001, 2014) is also an 

IBM, but with multiple patches accounting for stochastic heterogeneity in composition and 

structure arising from succession following stand-destroying disturbance. Both ‘individual’ 

and more commonly used ‘cohort’ modes are implemented. In the cohort mode, tree or shrub 

individuals of the same age and PFT within patch are grouped together and simulated as an 

average individual, scaled to patch level via cohort density. Multiple PFTs may occur within 

a single patch, and compete for light, water and nitrogen. Photosynthesis, stomatal 

conductance, phenology, turnover and allocation follow LPJ-DGVM (Sitch et al., 2003), with 

the addition (LPJ-GUESSv3.0 onward) of nitrogen cycling (Smith et al., 2014). The model 

includes the wildfire scheme of Thonicke et al., (2001), and a new representation of fire 

dynamics is in development. 

 

LPJ-GUESS is coupled to the RCA4 regional climate model (Wramneby et al., 2010; Smith 

et al. 2011). It also accounts for land cover dynamics and carbon cycling within the EC-

EARTH ESM (Hazeleger et al., 2010; Weiss et al., 2014). Daily meteorological fields are 

input to LPJ-GUESS and adjustments in leaf area index for separate `high’ and `low’ 

vegetation tiles, averaged across patches, are returned to the land surface physics scheme.  

Impacts on energy and water exchange with the atmosphere are manifested via albedo, 

evapotranspiration and surface roughness length. CO2 is exchanged daily with the 
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atmospheric transport model. 

LM3-PPA 

The Geophysical Fluid Dynamics Laboratory (GFDL) Land Model 3 with the Perfect 

Plasticity Approximation (LM3-PPA) is a cohort-based VDM (Weng et al., 2015). The PPA 

assumes that tree crowns ‘perfectly’ fill canopy gaps through phototropism (plasticity) 

(Strigul et al., 2008).  Crowns thus self-organize into discrete canopy layers, within which all 

plants receive the same incoming radiation The LM3-PPA model extends earlier work on 

simpler tractable PPA models (Farrior et al., 2013, 2016) to include prognostic energy, water 

and carbon cycling. The simpler PPA models allows ecosystem scale consequences of plant 

strategies to be rapidly predicted, allowing the properties of the complex model to be 

investigated in greater depth (Weng et al., 2015).  

 

LM3-PPA successfully captured observed successional dynamics of one site in Eastern US 

temperate forest (Weng et al., 2015), and the changing relative abundances of deciduous and 

evergreen strategies over succession in three sites spanning temperate to boreal zones in 

North America (Weng et al., 2016). Coupling to the GFDL ESM for site-level simulations 

has been completed, and global implementation is currently in progress.  

 

Ecosystem Demography models 

The Ecosystem Demography (ED) concept is also a cohort‐based representation of vegetation 

dynamics (Hurtt et al., 1998; Moorcroft et al., 2001).  In contrast to the LM3-PPA, ED 

discretizes the simulated landscape into spatially implicit ‘patches’ according to ‘age since 

last disturbance’, capturing the dynamic matrix of disturbance-recovery processes within a 

typical forest ecosystem in a deterministic manner (in contrast to LPJ-GUESS and SEIB).  

Within patches, individuals are grouped into cohorts by PFT and height class, and height-
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structured competition for light between cohorts drives successional dynamics. ED uses a 

patch fusion/fission scheme to track the landscape-scale age distribution resulting from 

disturbance. During fission, disturbance splits patch areas into undisturbed and disturbed 

fractions. During fusion, (to keep the number of patches from growing exponentially), 

patches that are similar in structure are merged. No sub-grid geographic information is 

retained. Similar fusion/fission routines exist for cohorts.  At least three derivatives of the 

original ED concept have emerged since its inception, including: 

 

ED  

One implementation of the Ecosystem Demography concept (currently known solely as ‘ED’), 

was developed from (Moorcroft et al., 2001) applied to the U.S by Hurtt et al., (2004) and Albani 

et al., (2006), and is now a global model (Fisk et al., 2015). Advances in this version have 

focused on the inclusion of land-use as driver of demography (Hurtt et al., 2006), transient 

effects of tropical cyclones (Fisk et al., 2013), plant migration in response to climate change 

(Flanagan et al., 2016), and detailed use of vegetation structure to initialize and test ecosystem 

dynamics (Hurtt et al., 2004, Thomas et al., 2008, Hurtt et al., 2010, Fisk et al., 2015, Hurtt et al., 

2016).  This branch of ED has also been coupled to the RAMS mesoscale atmospheric model 

(Roy et al., 2003) and the GCAM integrated Assessment Model (Fisk 2015) and also serves as 

base model of the NASA Carbon Monitoring System (Hurtt et al., 2014), and the NASA-GEDI 

mission (Dubayah et al., 2014). 

 

ED2 

The Ecosystem Demography Model v2 (ED2) (Medvigy et al., 2009, 

https://github.com/EDmodel/ED2) also uses the scaling concepts of Moorcroft et al., (2001), 

with numerous subsequent developments. In ED2, grid cells are further disaggregated by 

https://github.com/EDmodel/ED2)
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similar edaphic conditions. Heterogeneity in light environment and canopy structure is 

integrated into the biophysical scheme, giving rise to differentiated horizontal and vertical 

micro-environments within grid-cells that vary in temperature, humidity, soil moisture and soil 

nutrient conditions. Recent developments include a plant hydrodynamic scheme, drought-

deciduous phenology (Xu et al., 2016), nitrogen fixers, boreal-specific PFTs, dynamic soil 

organic layers, and trait-based recruitment (Trugman et al., 2016). 

 

ED2 has been tested in boreal (Trugman et al., 2016), temperate (Medvigy et al., 2009, 

Medvigy and Moorcroft 2012, Medvigy et al., 2013, Antonarakis et al., 2014), tropical (Kim 

et al., 2012; Zhang et al., 2015; Levine et al., 2016; Xu et al., 2016), tundra (Davidson et al., 

2009), agricultural (Lokupitiya et al., 2016), and biofuel systems (LeBauer et al., 2013). It 

has also been applied to ecosystems undergoing disturbance events such as fire, drought, 

elevated CO2, land-use change, and insect defoliation (Medvigy et al., 2012, Zhang et al., 

2015, Miller et al., 2016, Trugman et al., 2016). ED2 is coupled to the Regional Atmospheric 

Modeling System (RAMS) (Knox et al., 2015; Swann et al., 2015). 

 

CLM(ED) 

CLM(ED)  (Fisher et al., 2015) is a variant of the Community Land Model (CLM) (Lawrence 

et al., 2011; Oleson et al., 2013), integrating the ED concept within the architecture of the 

Community Earth System Model (Hurrell et al., 2013).  CLM(ED) includes a merging of the 

ED and PPA concepts, allocating cohorts to canopy and understorey layers. It deviates from 

the standard PPA as it does not allocate canopy levels according to a definitive height 

threshold (z*, Purves et al., 2008; Strigul et al., 2008) and instead splits growing cohorts 

between canopy layers - the fraction of each cohort remaining in the canopy a continuous 

function of height (in principle increasing the probability of coexistence, Fisher et al., 2010). 
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Canopy biophysics, hydrology, photosynthesis, and respiration all follow CLM4.5 (Oleson et 

al., 2013) subject to disaggregation into cohort-level fluxes. CLM(ED) includes new 

representations of phenology and carbon storage and a modified SPITFIRE fire model 

(Thonicke et el. 2010). CLM(ED) was applied regionally, focusing on the sensitivity of 

biome boundaries to plant trait representation (Fisher et al., 2015) and will be re-named 

FATES (Functionally Assembled Terrestrial Ecosystem Simulated) in future references.  

 

Approaches to model structure and process representation  

Historically, demographic models (typically IBMs) have been distinct from models with 

detailed plant physiological representation. In the VDMs discussed here, however, 

demographics (recruitment, growth, mortality) arise primarily as functions of physiological 

functions and so the two are intimately linked. Thus, design decisions in physiological 

algorithms have potentially critical impacts on the emergent population dynamics.  In this 

section, we discuss the process modifications that are required when moving from a g1DVM 

model to a size-structured VDM. These include higher-order representation of competition 

for light, water and nutrients, demographic processes (recruitment, mortality) and disturbance 

(fire, land use).   Our intention is to 1) illustrate the logic behind the inclusion of new model 

features, 2) highlight process uncertainties that remain or emerge (by way of motivating new 

research themes), and 3) provide context for the following discussion of model evaluation 

data. 

 

Competition for light 

Land surface models calculate radiation partitioning and the within-canopy radiation regime 

using radiative transfer models (RTM).  RTMs simulate the reflectance, interception, 

absorption, and transmission (into the ground) of shortwave radiation (0.3 to 2.5 microns) 
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through a canopy comprised of scattering elements (leaves, wood, soil and snow). Incoming 

radiation is typically partitioned into direct and diffuse streams.  Interception of direct 

radiation by scattering elements results in reflected and transmitted fluxes of diffuse 

radiation. Upwards-reflected diffuse radiation affects leaves higher in the canopy, preventing 

a simple solution to the partitioning of energy.  To resolve this, iterative methods calculate 

upwards and downwards diffuse fluxes until a solution is reached (Goudriaan, 1977; Norman, 

1979).  Other approaches use the ‘two-stream approximation’ (Dickinson, 1983; Sellers, 

1985), a system of two coupled ordinary differential equations which can be analytically 

solved (Liou 2002) assuming a continuum with homogenous reflectance and transmission 

characteristics. The two-stream approximation is used for a single canopy divided into 

sun/shade fractions in CLM4.5 (Bonan et al., 2011) and as a set of canopy layers each with 

its own 2-stream solution for JULES (Mercado et al., 2007), ORCHIDEE-CAN (Naudts et 

al., 2015), ED2 (Medgivy et al., 2009) and CLM(SPA) (Bonan et al., 2014).  

 

In VDMs, the RTM is necessarily more complex than standard LSMs because of the need to 

have more than one PFT within a given vertical structure canopy, invalidating the 

homogeneity assumptions of the two-stream model. VDMs must further determine 1) how to 

partition leaves and stems of cohorts/individuals into discrete scattering elements within 

which there can be an assumption of homogeneity and 2) how to arrange these scattering 

elements relative to each other, to discern the influence of plant height on radiation 

interception. The details of how these issues are resolved control the nature of the feedback 

between plant size and light acquisition, and thus are a pivotal component of any trait-

filtering architecture (Fisher et al., 2010; Scheiter et al., 2012).  
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Solving these problems efficiently is a significant component of the implementation of 

VDMs in ESMs. Here, we summarize the status of the existing schemes, their advantage and 

disadvantages, and suggest ways in which these might be developed further. Alternative 

schemes are represented in Fig. 1.  

 

Individual-based approach: SEIB 

In SEIB-DGVM, each individual crown has an x-y location in space, and shading of trees by 

their neighbors is explicitly simulated. Direct and diffuse photosynthetically active radiation 

(PAR) are estimated for each crown disk. For diffuse PAR, all disks at the same height 

receive the same radiation, attenuated by the leaf area index (LAI) above each disk using 

Beer’s law (Goudriaan et al., 1977).  For direct light, a ‘virtual cylinder’ is calculated for 

each canopy disc. The cylinder extends South, at 0.86 x the midday solar angle (Sato et al. 

2007), and available PAR is attenuated (also using Beer’s law) by the leaves located within 

the cylinder.   The grass layer is horizontally divided into 1x1 m cells, each of which receives 

PAR attenuated by the LAI above. Some simplifications are employed to efficiently simulate 

individual trees (daily timestep, static solar angle, few or no replicates). In contrast, cohort 

models (below) have a lower computational footprint, but must designate rules by which light 

is distributed to cohorts of differing height in the absence of direct spatial competition.   

Infinitely thin flat crowns: ED, ED2 

Perhaps the most straightforward method for representing how cohort leaves are aligned with 

respect to incoming light is the ‘flat-top crown’ idea; wherein the total leaf area of each 

cohort is conceptually distributed evenly across the entire canopy area of a patch (one 

infinitely thin layer). The cohort-layers are stacked vertically and the two-stream model is 

used to determine radiation absorbed by each layer at its midpoint.  Each cohort thus is 

shaded by all taller cohorts.  
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The flat-top method is relatively straightforward to implement, but suffers from the 

biologically unrealistic outcome that marginally taller cohorts outcompete their neighbors in 

terms of light availability. This can lead to systematic growth biases (compared to 

observations) where the tallest trees grow too fast and next-tallest trees more slowly, making 

coexistence of multiple PFTs more difficult to achieve (Fisher et al., 2010). Further, there is 

no representation of the effects of space on canopy structure (Farrior et al., 2016). In ED2, 

these negative effects have been partially mitigated by (1) the consideration of cohort crown 

area, which allows partial, rather than complete, shading among cohorts and, (2) a cohort 

splitting algorithm that prevents a single cohort from accumulating a leaf area index above a 

predetermined maximum LAI threshold.  

  

Vertically overlapping crowns: LPJ-GUESS  

LPJ-GUESS adopts an approach similar to ED2 but with three-dimensional crowns evenly 

distributed across the area (c. 0.1 ha) of each stochastic patch, and uniformly distributed in 

the vertical dimension from ground level up to the current maximum height of each 

individual or cohort. A multi-layer Beer’s law integration partitions incoming PAR among 

cohorts by relating light absorptance of each layer to that layer’s leaf area using a single fixed 

extinction coefficient (Smith et al., 2001). A herbaceous layer captures PAR not absorbed by 

the canopy.  

 

Perfect Plasticity Approximation: LM3-PPA 

The PPA assumes that trees can forage for light in a ‘perfectly plastic’ manner horizontally 

within a patch. Starting with the tallest tree, the crown area of each successively shorter tree 

is assigned to the canopy layer until the cumulative canopy crown area equals or exceeds the 
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patch ground area. Once the ‘canopy’ is filled with tree crowns, the next shorter trees inhabit 

the first understory layer and are shaded by the trees in the canopy. If the first understory 

layer is also full, then a additional understory layers are created. All crowns in the same layer 

receive the same incoming radiation streams, and penetration of light through each crown is 

determined using Beer’s law (Weng et al., 2015). The radiation streams penetrating the 

crowns of a layer are averaged before passing to the next lower layer. Light reflected by the 

soil can be absorbed by the leaves above.  Physiologically-based PPA models Dybzinski et al. 

2011, Farrior et al. 2015, Weng et al. 2015] include a gap fraction parameter (η), whereby 

only 1−η of each layer can be filled. This allows more light to reach the understory, and thus 

more realistic understory behavior, but does not fundamentally change the PPA algorithm. 

 

Discretized PPA: CLM(ED)  

The CLM(ED) follows a similar logic to the PPA, and resolves radiation streams between 

canopy layers, and also discretizes direct and diffuse fluxes into ‘leaf layers’ within cohorts.  

To reduce computational intensity, cohorts are merged together for flux calculations, such 

that all leaves of each PFT are represented by a three-dimensional matrix of PFT, canopy 

layer, and leaf layer. An iterative, layered solution, following Norman (1979), calculates 

equilibrium upwards and downwards radiation fluxes.  

 

Modifying extreme assumptions 

The existing methodologies for the division of solar radiation in cohort models represent two 

extreme assumptions at either end of a continuum. The flat-top assumption implies that small 

differences in relative height lead to large changes in light availability (within a patch), 

whereas the PPA assumption means that differences in height, however extreme, only affect 

light availability at the boundaries between canopy layers (canopy vs. understory). In reality, 
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canopy trees all receive equivalent light from above, but the amount of lateral light they 

receive depends on their height relative to their neighbors. An ideal framework might include 

the capacity of the PPA to represent the impact of space on competition for overhead light, 

while adding change in lateral light availability with height among canopy trees. A spatially-

implicit scheme that could capture both of these features would enhance the ability of VDMs 

to capture size-related variation in light availability, and thus presumably size-related 

variation in growth and survival.  

 

Water acquisition and its influence on plant physiology 

In comparison with competition for light, competition for water is less well-understood, and 

model representations remain poorly developed, especially in terms of how water is 

distributed among competing plants, as well as in how water acquisition affects plant 

processes.  

 

Representing competition for water 

 

Shared vs. partitioned water resources: 

Models use contrasting assumptions of how water resources are divided horizontally within a 

grid-cell. Some VDMs represent a single ‘pool’ of water from which all plants draw equally 

(CLM(ED), LM3-PPA, SEIB-DGVM, Fig. 2, panel b). Other models (ED2, LPJ-GUESS) 

divide water resources by patch (Fig. 2, panel a). Real ecosystems are unlikely to conform to 

either of these simplifications.  In reality, whether water resources are shared across patches 

depends on the relative characteristic length scales of disturbance and of horizontal water 

redistribution (Jupp & Twiss, 2006). Where canopy gaps and thus patches are small, we 

might expect that water would be effectively shared between patches of different ages; in 
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contrast, where disturbance events are larger-scale (blow-downs, fires) and patches 

accordingly larger, we might expect little or no such water sharing. No VDMs track length 

scales or arrangement of disturbance events by default, nor do they represent inter-patch 

water fluxes The impact of this type of effect can be important for the surface energy balance 

(Shrestha et al., 2016). 

 

Spatial aggregation of water resources: 

A rich literature exists on the spatial partitioning of water resources in semi-arid regions 

(Rodriguez-Iturbe et al., 1999; Van Wijk & Rodriguez-Iturbe 2002; Meron et al., 2004; 

d’Odorico et al., 2007; Scanlon et al., 2007; Gilad et al., 2007; Borgogno et al., 2009; Meron 

2011), the focus of which is the tendency for soil moisture states to shift away from the mean 

due to vegetation-mediated positive feedback mechanisms (Fig 2. Panel c), including root 

foraging for water, and impacts of vegetation on infiltration and recruitment (Shachak et al., 

2008, Ivanov et al., 2010). These mechanisms allow patchy vegetation to persist where the 

spatial mean moisture state might prevent viable vegetation growth. LSMs typically assume 

spatial homogeneity of moisture, leading in principle to underestimations of vegetation 

survival. 

 

Size symmetry of water competition: 

The degree to which competition for belowground resources is asymmetric with regard to 

plant size is unclear. VDMs typically allow partitioning of water between plants of differing 

root depth (Ivanov et al., 2012) but within a given soil volume assume perfectly symmetric 

competition. Schwinning and Weiner (1998) argued that, where a large plant is in 

competition with a small plant, the fraction of the small plant’s root zone affected by the 

resulting resource depletion is larger than the affected fraction of the root system of the large 
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plant, (Fig 2. Panels d and e) suggesting the likelihood of size asymmetry, but the degree to 

which this is a dominant phenomenon remains unclear (DeMalach et al., 2016; Schenk, 

2006). 

 

 

Impacts of water on plant physiology 

LSMs have used simplistic representations of the responses of plants to acquired soil 

moisture since their inception (McDowell et al., 2013). Recently, plant hydraulics theory 

(Sperry et al., 1998), offline models (Williams et al., 2001; Bohrer et al., 2005; Hickler et al., 

2006; Janott et al., 2011;  McDowell et al., 2013; Gentine et al., 2015) and datasets (Choat et 

al., 2012; Maréchaux et al., 2016; Christoffersen et al., 2016) have improved substantially, 

giving rise to the potential for inclusion of ‘hydrodynamics’ (prognosis of moisture states and 

fluxes within plants) in LSMs. These methods have shown promise for improving 

simulations of carbon, water, and energy fluxes, particularly during dry conditions (Williams 

et al., 2001; Fisher et al., 2006, 2007; Bonan et al., 2014; Christoffersen et al., 2016). 

Prediction of internal plant moisture status might also allow more realistic representation of 

drought deciduousness (Xu et al., 2016), sink limitations on growth (Fatichi et al., 2014), and 

stress-induced tree mortality (Anderegg et al. 2012) 

 

 

Considerable effort is currently being expended on the implementation of such hydrodynamic 

schemes within VDMs (Xu et al., 2016; Christoffersen et al., 2016). Key challenges include 

1) parameterization of hydraulic trait trade-offs and coordination across functional types and 

tissues, 2) understanding the impact of segmentation of the hydraulic continuum, 3) 

representing characteristic timescales of xylem embolism refilling (Mackay et al., 2015), 4) 

linking stomatal responses to plant hydraulic states/fluxes (Bonan et al., 2014; Sperry & Love 
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2015; Sperry et al., 2016; Christoffersen et al., 2016), 5) integrating plant hydraulic status 

with existing growth and allocation schemes and demography, and 6) integration with 

appropriate benchmarking data.  

 

Below-ground competition for nutrients:  

Nutrient cycling (nitrogen, rarely phosphorus) is now represented in several LSMs (Wang et 

al., 2010; Zaehle et al., 2010; Smith et al. 2014) yet uncertainties remain concerning the 

appropriate representation of many processes (Zaehle & Dalmonech 2011; Xu et al., 2012; 

Brzostek et al., 2014; Zaehle et al., 2014). VDMs inherit these uncertainties, and are subject 

to further structural degrees of freedom, derived from size/age structured representations of 

nutrient supply and demand. In principle, similar concerns of tiling impacts, aggregation, and 

asymmetric competition apply to nutrient as well as water uptake. One difference is that 

nutrients tend to be more abundant near the ground surface than at depth, thus may allow for 

more size-symmetric competition than for water. An advantage of VDMs is that they might 

better resolve some features of nutrient cycling that are difficult to include in typical LSMs, 

such as explicit representation of the successional status of nitrogen-fixing versus non-fixing 

plants, and release of nutrient competition following disturbance. Of the models described 

here, ED2, LPJ-GUESS, and LM3-PPA have nutrient cycling schemes (Trugman et al., 2016; 

Smith et al. 2014; Weng et al. 2016)   

 

 

Vegetation Demographics: recruitment & mortality 

g1DVMs typically include representations of plant demography (recruitment, mortality) 

(Sitch et al., 2003; Melton and Arora 2016). Where, in g1DVMs, mortality and recruitment 

rates only impact mean vegetation biomass and PFT distributions, in size-structured VDMs, 
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these processes also impact emergent forest structure and PFT composition, which in turn 

affect light competition and feed back on PFT filtering. There is thus a strong imperative to 

constrain demographic processes in VDMs.  

 

Mortality 

Tree mortality is represented in g1DVMs as either a constant (in basic models) or as a 

function of various ‘proxies’ - carbon balance, hydraulic stress, growth efficiency, plant 

traits, size, or age (McDowell et al., 2011, 2013). Persistent uncertainty about the major 

drivers of plant death means that a consensus on model structure is not yet justified. Some 

models now account for several additional sources of mortality, including biotic damage 

(Hicke et al., 2012, Dietze and Matthes 2015; Jönsson et al. 2012), atmospheric pollutants 

(Dietze and Moorcroft 2011), wind damage (Lagergren et al. 2012) and herbivory (Pachzelt 

et al. 2015) but relative importance of these various processes remains unclear. 

Representations of height structures and hydrodynamics in VDMs should improve the fidelity 

of mortality proxy prediction, given that mortality can be strongly related to tree size (Muller-

Landau et al., 2006; Lines et al., 2010; Bennet et al., 2015). 

 

The likelihood of increased climate-stress related mortality (Anderegg et al., 2013) has 

motivated numerous experimental and observational studies in recent years (McDowell et al., 

2008, 2011, 2013, 2015; Zeppel et al., 2011; Xu et al., 2013; Anderegg et al., 2012, 2015). 

One goal of this effort is to empirically relate hypothesized physiological proxies to rates of 

tree death at relevant scales.  

 

At the scale of individual plants, mortality is a discrete process, occurring after some 

threshold of physiological stress is reached. If a model, however, predicted that all members 
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of a given cohort died on the day that their average stress exceeded some threshold, that 

cohort would be extinguished across the whole landscape. Given ESM gridcells are often 

very large (>100km resolution) this outcome would be ecologically unrealistic because of 

heterogeneity within the real population represented by that cohort.  Cohort-based models 

therefore require empirical linkages between physiological proxies of death and mortality 

rates at the scale of model predictions.   On a stand scale, the population represented by a 

cohort is heterogeneous due to variations in resource availability, genotype diversity, 

herbivory and disease. Across a landscape, the population represented by a cohort might also 

encounter heterogeneity in soil texture, topography, aspect, microclimate etc.  Therefore we 

expect a looser connection between average physiological stress and landscape-scale 

mortality rates as the scale of prediction increases. In principle, the slope of the relationship 

between average physiological stress and landscape-scale mortality requires scale-dependent 

calibration (Fig. 3).    

 

Recruitment  

There is some evidence that establishment rates may be considerably more sensitive to 

environmental filters than selection of adult plants, thus, compositional shifts are as likely to 

be driven by changes in recruitment as by adult growth and mortality (Ibanez et al., 2008, 

2009). All demographic models represent plant recruitment processes (seed production, 

dispersal & germination), albeit simplistically. The rate of seed production is typically highly 

idealized; in ED-type models, it is a fixed fraction of net primary productivity (NPP) for 

plants that are in positive carbon balance (Moorcroft et al., 2001). Most VDMs do not 

consider dispersal among grid cells, given the complexities of this process (Sato and Ise 

2012; Nabel et al., 2015). To simulate germination, VDMs typically impose a minimum size 

threshold below which physiological processes and demography are not resolved and the 
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emergence of new recruits is thus a phenomenological formulation (Farrior et al., 2013), 

modulated in some VDMs by climate envelopes (LPJ-GUESS, SEIB-DGVM), empirical 

proxies (forest-floor potential NPP, Smith et al. 2001) or plant traits and environmental 

conditions (Trugman et al. 2016).  

 

Disturbance Regimes: Fire & land use 

Fire 

Most ESMs contain representations of the impacts of fire, in g1DVMs, however, the impact 

of fire-induced tree mortality is simply to reduce the overall number density (individuals/m
2
) 

in the next timestep (Hantsen et al., 2016). VDMs’ tracking of size and age structure provides 

three opportunities to improve representation of fire-vegetation interactions. First, age-since-

disturbance structured models can natively represent disturbance-recovery mosaics that arise 

as a result of frequent fire regimes and fire-vegetation feedback processes (wind speed, 

flammability, recruitment) within those regimes.  Second, vertical canopy structure can 

capture size-structured mortality resulting from fire events and thus represent the dynamics of 

the ‘fire-trap’ in savanna-type ecosystems (Hoffmann & Solbrig, 2003; Hoffmann et al. 

2012).  

 

Land Use  

Capturing the impact of human land-use and land-cover change on the carbon cycle, 

hydrology and other biogeophysical systems is a key application of ESMs (Pongratz et al., 

2009; Shevliakova et al., 2009; Jones et al., 2011; de Noblet-Ducoudré et al., 2012; Brovkin 

et al., 2013).  For the CMIP inter-comparison process, a single consolidated set of land-use 

transitions are specified (with carbon estimates from the ‘ED’ model as described above, 

Hurtt et al., 2011), providing a matrix of transitions between land use classes (e.g. primary 
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forest, secondary forest, pasture, cropland) through time (Lawrence et al., 2016). In 

traditional LSMs, land-use transitions must be translated into annual land-cover maps that 

specify the fraction of the land surface occupied by each PFT (Lawrence et al., 2012).  A 

principal advantage of VDMs is that these land-use transitions can be directly implemented 

without the need for translation into PFT fractions, since they can explicitly simulate 

ecosystem disturbance and recovery (Shevliakova et al., 2009). 

 

Representing human managed systems such as croplands, pasturelands, and plantation forests 

also requires the specification of transitions and management practices (e.g. harvest, grazing) 

(Shevliakova et al., 2009, Lindeskog et al., 2013). Implementing standardized representations 

of these processes directly will emerge as a challenge as VDMs become more common 

elements of ESM structure. A further advantage of VDMs relates to the impacts of shifting 

cultivation. The impact of gross land use transitions has been estimated to generate emissions 

that are 15-40% higher than the net transitions alone (Hansis et al., 2015; Stocker et al., 2014; 

Wilkenskjeld et al., 2014). This effect can be captured using age-since-disturbance mosaic 

approaches but is not directly possible with traditional LSMs.  

 

Benchmarking VDMs  

On the need for VDM specific benchmarking data 

Benchmarking and validation activities for LSMs have become increasingly numerous and 

sophisticated in recent years. These include comparisons against global or regional gridded 

data products (Luo et al., 2012), comparisons of relationships between two or more properties 

(emergent constraints), comparisons against intensively measured individual sites (including 

flux towers) (Schwalm et al., 2010) and against manipulation experiments (de Kauwe et al., 

2013; Zaehle et al., 2014). The International Land Model Benchmarking Project 
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(www.iLAMB.org) maintains a set of standard benchmarking products used for this purpose.  

Expanding this set of standardized data products to match the scope of VDMs will be a 

critical challenge in years to come (Hoffman et al., 2017).  In this section, we describe 

potential metrics for benchmarking the novel aspects of VDMs described above.  For some 

components, benchmarking datasets are already available, but for many they are scarce. We 

hope to illustrate potential platforms for future model-data integration made possible by the 

additional realism of VDM components. 

 

Further to this, numerous model inter-comparison projects in recent years have attempted to 

compare the outputs of large and complex Earth Systems Model components (including 

LSMs) against various types of benchmarking data. Vegetation demographics, in particular, 

are the emergent properties of a very large array of other simulated processes in VDMs, and 

so it is not clear that a straight inter-comparison between the featured approaches would 

generate a clear comparison of how different methods for abstracting ecosystems into models 

compare. Given the lack of consensus on the parametric and structural approaches employed 

in the physiological and biophysical algorithms of all said models, it is notoriously difficult to 

assign differences in model performance to individual attributes, such as their demographic 

representation (c.f. Zaehle et al. 2014). This difficulty provides a motivation for assessing the 

skill of individual component parts (e.g. radiation transfer schemes, hydrodynamic 

representations, allocation, mortality, and recruitment models,). Illustrating that VDMs have 

these components in common might provide a framework for future more refined inter-

comparison studies. 

 

Validation of radiation transfer and canopy organization 

Radiation transfer models have two main components: The first is the underlying scheme; 
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how radiation interacts with the scattering elements, reflectance and transmittance properties, 

and the treatment of diffuse radiation. Validating these representations is arguably an existing 

field of research, particularly in the realm of assessing canopy structure from remote sensing 

data (Smolander & Sternberg 2005; Widlowski et al., 2009, 2015).  

 

The second feature of VDM RTMs are the assumptions controlling the arrangement of 

scattering elements with respect to each other. e.g. Is a discrete-layered PPA-like structure a 

good approximation of a forest canopy? How much do adjacent crowns affect each other’s 

light interception? These questions might be addressed using detailed 3D observations on the 

arrangement of leaves and crowns in space, via high-density airborne or ground-based 

LiDAR (Stark et al., 2012; 2015, Detto et al., 2015), and then applying more complex 3D 

radiative transfer models (Morton et al., 2015) to assess how alternate VDM RTM structures 

perform.  These exercises should be prioritized, since the impact of size on resource 

acquisition is such a fundamentally important process in determining ecological 

demographics.  

 

Validation of plant water use   

Establishing credible boundary conditions (soil moisture, meteorology, vegetation structure) 

and appropriate validation data (sap flow, leaf water potential, gas exchange) is a challenging 

prerequisite for testing alternative hypotheses about the physics and physiology governing 

plant water utilization. The number of locations for which this validation is possible is small 

but growing. Such intensive ecosystem physiology observations have proven extremely 

valuable, however, illustrated by their repeated use in model validation exercises  (Williams 

et al., 2001; Fisher et al., 2007; Zeppel et al., 2008; Plaut et al., 2012; Poyatos et al., 2013; 

Joetzer et al., 2014; Matheny et al., 2016). Since plant water status is fundamentally linked to 
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both height, (on account of gravitational effects) and canopy position (in relation to differing 

evaporation rates) vertically-resolved models are critical to allowing direct model-data 

comparison exercises.  Christofferson et al., for example, Christofferson et al. (2016) 

illustrate the importance of canopy position in correctly simulating daytime leaf water 

potential at the Caxiuana throughfall exclusion experiment in Amazonia, thus, g1DVMs with 

aggregated plant water status might be difficult to compare directly with plant hydraulics 

observations.  

 

New datasets documenting stem water storage (Matheny et al., 2015, Carrasco et al., 2015), 

remotely sensed plant water status (Konings & Gentine, 2016) and solar induced florescence 

(Guanter et al., 2016), also have the potential to provide additional metrics for evaluation of 

hydrodynamic model predictions.   

 

Validation of canopy structure 

Tests against plot-scale size structure data: 

The canopy structure (tree size frequency per plant type) predicted by a VDM can be 

validated using ecological census data from permanent sample plots. Predicted canopy 

structure is a high-level emergent property, however, and is influenced by radiation transfer, 

photosynthesis, respiration, allocation, and demographics (recruitment and mortality). Thus 

where discrepancies arise, it is difficult to diagnose the model specific errors that led to the 

poor predictive power.  

 

Using the PPA, Farrior et al., (2016) circumvent this problem by collapsing the details of 

growth and demographic rates at a given location into constant rate parameters, which vary 

only with canopy status and PFT. This approach successfully captures the size distribution of 
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a tropical rainforest, in particular, the observed shift in structure between understory trees 

(which approximate a power-law distribution) and canopy trees (which do not). This result 

highlights 1) the need to account for asymmetric availability of light across size classes (in 

contrast to West et al., 1999; Enquist et al., 2009), 2) that simulation of small-scale 

disturbances is critical in the tropics, necessitating a model inclusive of gap formation and 3), 

that representation of the plant canopy as distinct strata (canopy and one or more understory 

layers) is a useful simplification.  

 

Tests against remote sensing of canopy structure: 

Existing Earth Observation products can detect phenological signals (Hansen et al., 2002) and 

vegetation stature (Lefsky et al., 2005; Simard et al., 2012). This allows a remote detection of 

`traditional’ PFTs (defined by phenology and growth habit).  As such, DVMs have historically 

been tested against these vegetation classification maps (Sitch et al., 2003; Bonan et al., 2003; 

Arora & Boer 2006; Fisher et al., 2015). Emerging data products that observe high spectral 

resolution (i.e. “hyperspectral”) data streams can be used to discern the properties of plant 

surfaces, which themselves can be linked to leaf or canopy traits (Asner et al., 2012; Singh et al., 

2015; Shiklomanov et al., 2016).  In principle, VDMs specified using PFTs that align with traits 

that can be detected using hyperspectral sensing (e.g. leaf nutrient and photosynthetic 

properties, moisture/temperature features, leaf thickness & venation) could be validated using 

these types of observation  (Antonarakis et al., 2014; Asner et al., 2016; Serbin et al., 2015). Use 

of LIDAR to detect individual tree height and crown diameter (Hurtt et al., 2004, 2010, 2016; 

Thomas et al., 2006; Barbier et al., 2010; Garrity et al., 2012; Jucker et al., 2016) can be used to 

constrain model vegetation structure predictions.  

 

Validation of demographic rates (recruitment, growth, mortality).  

Tests against plot-scale demographic data: 
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Recruitment, growth and mortality rates can be estimated from repeated censuses at 

permanent sample plots (Lewis et al., 2004; Philips et al., 2010). The direct use of plot data is 

hindered by the need to drive models with local climate data, however, and as such is 

typically limited to more intensively observed field sites (Powell et al. 2013).   Emergent 

relationships, such as the change in mortality with environmental gradients (Philips et al., 

2010) other ecosystem properties such as NPP (Delbart et al. 2010) and regional 

extrapolation of mortality rates (Lines et al., 2010; Johnson et al., 2016) should also prove 

useful as benchmarks that a model might be expected to capture. 

 

Tests against remotely sensed demographic data: 

Recent developments in remote sensing-based disturbance detection, including a high-

resolution (30 m x 30 m) global disturbance database (Hansen et al., 2013), provide 

opportunities to evaluate large tree mortality events at global scales. At smaller scales, 

(Garrity et al., 2013) illustrate the potential for detection of tree mortality using 1m resolution 

QuickBird imagery. Hyperspectral and airborne LIDAR techniques will likely improve our 

ability to remotely detect tree mortality rates (Eitel et al., 2016). Remaining limitations of 

these approaches include the fact that they primarily detect mortality of canopy trees 

(McDowell et al., 2015), and that issues related to return frequency, cloud cover, sensor 

lifetime impact the ability to detect the exact timing of mortality events, impeding attribution 

of their drivers.  

Broader issues concerning the inclusion of Vegetation Demographics in ESMs 

Plant trait information 

The use of plant trait data for parameterization of LSMs in general (Reich 2014; Reich et al., 

2014; Verheijen et al., 2015) and VDMs in particular has been covered extensively elsewhere 
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(Scheiter et al., 2012; Pavlick et al., 2013; Fyllas et al., 2014; Fisher et al., 2015; 

Sakschewski et al., 2015; Pappas et al., 2015). VDMs are primarily designed as ‘trait 

filtering’ models, in that they predict the differential demographic performance (in terms of 

growth mortality and recruitment) from plant traits and environmental conditions, and thus in 

turn predict/filter the distribution of those traits across the landscape. The success of trait 

filtering approaches is linked to the fidelity with which trait trade-off surfaces are prescribed 

to the model (Scheiter et al., 2012). Designing balanced trade-offs is a particular concern 

with this approach. Specifically, allowing traits to vary such that one particular PFT gains a 

large growth advantage -without sufficient attendant cost- will result in the runaway 

dominance of that PFT, particularly given positive feedbacks between growth, resource 

acquisition, and reproductive success (Pacala and Tilman 1994; Fisher et al., 2010, 2015; 

Bohn et al., 2011). Deriving balanced trade-off surfaces from plant trait datasets is also 

problematic if environmental variation affects plant trait expression. For example, Reich et 

al., (2014) find that leaf lifespan of needleleaf trees varies with temperature, breaking the 

more typical global correlation with leaf mass per unit area. Thus, geographical datasets can 

conflate the causes of trait variability, as can impacts of shade on trait plasticity (Keenan & 

Niinemets 2016). We strongly advocate for detailed analyses of emerging trait databases to 

provide relevant trait relationships for VDM simulations (e.g. Christofferson et al., 2016).  

Improving Informatics  

Working with VDMs presents notable challenges in informatics and statistics due to their 

complexity, input requirements and output dimensionality. Recently, model informatics 

systems have emerged to meet these challenges, including the Predictive Ecosystem Analyzer 

(PEcAn) (Dietze et al., 2013, 2014; LeBauer et al., 2013). The primary goals of PEcAn are to 

reduce redundancy and improve reliability in the workflows associated with running, 

parameterizing, validating, calibrating and reporting ecosystem models. PEcAn consists of a 
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suite of open-source workflow and statistical tools (https://github.com/PecanProject/pecan) 

and a web interface, (pecanproject.org).  Tools include sensitivity analysis and variance 

decomposition, model-data assimilation, Bayesian calibration, as well as generation of 

common meteorological drivers, validation data streams, benchmarking, and visualizations.  

These common protocols allow analyses to be replicated across models, making inter-model 

comparison easier. Further, PEcAn employs a database to track workflows across researchers 

and institutions, allowing robust provenance tracking. PEcAn currently supports ten different 

ecosystem models, including most of the models discussed in this paper (ED2, CLM(ED), 

LM3-PPA, LPJ-GUESS).  PEcAn is an open community project, and is extensible for novel 

analyses and modules.  

 

Summary 

We describe the major modifications to traditional dynamic vegetation models that are 

necessary to allow structured representation of ecological demographic processes inside the 

architecture of Earth System Models.  These developments open a number of avenues for 

better data-model integration, and highlight gaps in ecological observation and understanding 

that we hope could be a major focus of future scientific endeavor.  

 

Priority areas for VDM development include  

1. Partitioning of solar radiation between competing plant canopies, and the physics of 

shading within and between individuals and cohorts. 

 2. Representation of plant hydrodynamics in models, and improving parameterizations and 

linkages to observations.   

3. Distribution of below-ground resources (nutrients and water) between size classes, PFTs, 
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and patches. 

4. Representation of demographic processes (mortality and recruitment), scaling of 

reductionist physiological models of plant mortality across heterogeneous landscapes, 

calibration using emerging remote sensing products, and trait impacts on recruitment rates.  

5. Better representation of land use processes and fire disturbance. For fire, this includes size-

structured impacts of burning, as well as recovery and fire-vegetation feedback processes. For 

land use change, challenges include mapping transitions into clear impacts on ecosystem 

structure and management and global parameterization of heterogenous anthropogenic 

impacts.   

 

These foci integrate many potential avenues for novel model-data-fusion effort that are made 

plausible via the implementation of demographic models. We advocate for more intensive 

and innovative usage of ecological data streams in model validation and argue that the many 

different avenues for development of VDMs will benefit from coordinated approaches to 

these topics. The development of common, widely-available intensive (plot-scale) and 

distributed (network and remote-sensing scale) testbeds, accessible via commonly-used 

online tools (e.g. iLAMB, PEcAn) will provide the greatest chance of constraining future 

trajectories of the land biosphere in ESMs   

 

Acknowledgements 

The outline for this manuscript was identified during a workshop focused on VDM 

implementation in ESMs held at the National Center for Atmospheric Research in January 2016.  

NCAR is sponsored by the National Science Foundation.  CDK, BC, RK, JH, TP, JS, CX & SPS were 

supported by the Next-Generation Ecosystem Experiments (NGEE Tropics) project that is 

supported by the Office of Biological and Environmental Research in the Department of Energy, 

Office of Science. TV and SPS were supported by NASA Terrestrial Ecology grant NNX14AH65G 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

and through the United States Department of Energy contract No. DE-SC0012704 to 

Brookhaven National Laboratory.  ATT was partially supported by a National Science 

Foundation Graduate scholarship. BS acknowledges support from the Strategic Research 

Fellowship Area MERGE. ML was funded by FAPESP (grant 2015/07227-6)” AMM was 

supported by U.S. National Science Foundation Hydrological Science grant 1521238. GH 

acknowledges the support of NASA.  JL and TZ were funded by USDA agreements 11-JV-112423-

059 and 16-JV-11242306-050. DM acknowledges support from the US Department of Energy, 

Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem 

Science (TES) Program under award number DE-SC0014363.  

 

References 

Albani M, Medvigy D, Hurtt GC, Moorcroft PR. (2006) The contributions of land‐ use 

change, CO2 fertilization, and climate variability to the Eastern US carbon sink. Global 

Change Biology, 12, 2370-90. 

 

Anderegg, W R, Berry, J A, Smith, D D, Sperry, J S, Anderegg, L D, & Field, C B (2012). 

The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. 

Proceedings of the National Academy of Sciences, 109(1), 233-237. 

 

Anderegg, WR, Kane, JM and Anderegg, LD, (2013). Consequences of widespread tree 

mortality triggered by drought and temperature stress. Nature Climate Change, 3(1), pp.30-

36. 

 

Anderegg WRL, Flint A, Huang C-y, Flint L, Berry JA, Davis Frank W, Sperry JS & Field 

CB (2015). Tree mortality predicted from drought-induced vascular damage. Nature 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Geoscience 8, 367-371. 

 

Antonarakis AS, Munger JW, Moorcroft PR (2014). Imaging spectroscopy- and lidar-derived 

estimates of canopy composition and structure to improve predictions of forest carbon fluxes 

and ecosystem dynamics. Geophysical Research Letters, 41(7):2535–2542.  

 

Arora VK, Boer GJ, (2006). Simulating competition and coexistence between plant 

functional types in a dynamic vegetation model. Earth Interactions, 10, 1-30. 

 

Arora VK, Boer GJ (2010) Uncertainties in the 20th century carbon budget associated with 

land use change. Global Change Biology, 16, 3327-3348. 

 

Asner GP, Knapp DE, Boardman J, et al., (2012). Carnegie Airborne Observatory-2: 

increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sensing 

of the Environment 124: 454–65. 

Asner GP, Martin RE, Anderson CB, Kryston K, Vaughn N, Knapp DE, Bentley LP, Shenkin A, 

Salinas N, Sinca F, Tupayachi R. (2016) Scale dependence of canopy trait distributions along a 

tropical forest elevation gradient. New Phytologist. doi: 10.1111/nph.14068  

Barbier N, Couteron P, Proisy C, Malhi Y, Gastellu‐Etchegorry JP. (2010) The 

variation of apparent crown size and canopy heterogeneity across lowland 

Amazonian forests. Global Ecology and Biogeography, 19, 72-84. 

Bennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ. (2015) Larger trees 

suffer most during drought in forests worldwide. Nature Plants, 1, 15139. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Bohn K, Dyke JG, Pavlick R, Reineking B, Reu B, Kleidon A (2011). The relative 

importance of seed competition, resource competition and perturbations on community 

structure. Biogeosciences, 8, 1107-1120. 

 

Bohrer G, Mourad H, Laursen TA, Drewry D, Avissar R, Poggi D, Oren R, Katul GG (2005). 

Finite element tree crown hydrodynamics model (FETCH) using porous media flow within 

branching elements: A new representation of tree hydrodynamics. Water Resources 

Research, 41, 11 

 

Bonan GB, Levis S, Sitch S, Vertenstein M, Oleson KW (2003). A dynamic global 

vegetation model for use with climate models: concepts and description of simulated 

vegetation dynamics. Global Change Biology, 9, 1543-1566. 

 

Bonan GB (2008). Forests and climate change: forcings, feedbacks, and the climate benefits 

of forests. Science, 320, 1444-1449. 

 

Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, 

Swenson, SC (2011). Improving canopy processes in the Community Land Model version 4 

(CLM4) using global flux fields empirically inferred from FLUXNET data. Journal of 

Geophysical Research: Biogeosciences, 116(G2). 

 

Bonan GB, Williams M, Fisher RA, Oleson KW (2014). Modeling stomatal conductance in 

the earth system: linking leaf water-use efficiency and water transport along the soil–plant–

atmosphere continuum. Geoscientific Model Development, 7, 2193-2222. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Borgogno, F, D'Odorico, P, Laio, F and Ridolfi, L (2009) Mathematical models of vegetation 

pattern formation in ecohydrology. Reviews of Geophysics, 47(1). 

 

Brovkin V, Boysen L, Arora VK, Boisier JP, Cadule P, Chini L, Claussen M, Friedlingstein 

P, Gayler V, Van Den Hurk BJ, Hurtt GC. (2013), Effect of Anthropogenic Land-Use and 

Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the 

Twenty-First Century, Journal of Climate, 26, 6859- 6881  

 

Brzostek ER, Fisher JB, Phillips RP. Modeling the carbon cost of plant nitrogen acquisition: 

Mycorrhizal trade‐offs and multipath resistance uptake improve predictions of 

retranslocation. (2014) Journal of Geophysical Research: Biogeosciences, 119, 1684-97. 

 

Bugmann H (2001). A review of forest gap models. Climatic Change, 51, 259-305. 

 

Cao M, Woodward FI. Dynamic responses of terrestrial ecosystem carbon cycling to global 

climate change. Nature, 393, 249-52. 

 

Carrasco LO, Bucci SJ, Di Francescantonio D et al., (2015). Water storage dynamics in the 

main stem of subtropical tree species differing in wood density, growth rate and life history 

traits. Tree Physiology, 35, 354-365.  

 

Choat B, Jansen S, Brodribb TJ et al., (2012). Global convergence in the vulnerability of 

forests to drought. Nature, 491, 752-755. 

 

Christoffersen, B O, Gloor, M, Fauset, S, Fyllas, N M, Galbraith, D R, Baker, T R, Kruijt, B, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Rowland, L, Fisher, R A, Binks, O J, Sevanto, S, Xu, C, Jansen, S, Choat, B, Mencuccini, M, 

McDowell, N G, and Meir, P (2016) Linking hydraulic traits to tropical forest function in a 

size-structured and trait-driven model (TFS v.1-Hydro), Geoscientific Model Development, 9, 

4227-4255.  

 

Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. (2000) Acceleration of global warming 

due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-7. 

 

de Noblet-Ducoudré, N, J-P Boisier, A Pitman, G Bonan, V Brovkin, F Cruz, C Delire, V 

Gayler, B Van den Hurk, and P Lawrence (2012) Determining robust impacts of land-use-

induced land cover changes on surface climate over North America and Eurasia: results from 

the first set of LUCID experiments. Journal of Climate, 25, 3261-3281. 

 

de Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Hickler T, Jain AK, Luo Y, 

Parton WJ, Prentice IC, Smith B. (2013) Forest water use and water use efficiency at elevated 

CO2: a model‐data intercomparison at two contrasting temperate forest FACE sites. Global 

Change Biology, 19, 1759-79. 

 

Delbart N, Ciais P, Chave J, Viovy N, Malhi Y, Le Toan T. (2010) Mortality as a key driver 

of the spatial distribution of aboveground biomass in Amazonian forest: results from a 

dynamic vegetation model. Biogeosciences, 7, 3027-39. 

 

DeMalach N,  Zaady E, Weiner J &  Kadmon R (2016) Size asymmetry of resource 

competition and the structure of plant communities.  Journal of Ecology. 104, 899-910. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

D'Odorico, P, Caylor, K, Okin, GS & Scanlon, TM (2007). On soil moisture–vegetation 

feedbacks and their possible effects on the dynamics of dryland ecosystems. Journal of 

Geophysical Research: Biogeosciences, 112(G4). 

 

Detto M, Asner GP, Muller-Landau HC, Sonnentag O (2015) Spatial variability in tropical 

forest leaf area density from multireturn lidar and modeling. Journal of Geophysical 

Research: Biogeosciences, 120,294-309. 

 

Davidson E, Lefebvre PA, Brando PM et al., (2009). Carbon inputs and water uptake in deep 

soils of an eastern Amazon forest. Forest Science, 57, 51–58. 

 

Dickinson, RE (1983) Land surface processes and climate-surface albedos and energy 

balance.  Advances in Geophysics, 25, 305-353. 

 

Dietze MC, Latimer AM (2011). Forest Simulators. Invited Chapter in: Sourcebook in 

Theoretical Ecology (A Hastings and L Gross, eds.), University of California Press, Berkeley, 

CA 

 

Dietze MC & Moorcroft PR (2011) Tree mortality in the eastern and central United States: 

patterns and drivers. Global Change Biology, 17, 3312-26. 

 

Dietze MC, Lebauer DS, Kooper RO (2013) On improving the communication between 

models and data. Plant, Cell & Environment, 36, 1575-85. 

 

Dietze MC. (2014) Gaps in knowledge and data driving uncertainty in models of 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

photosynthesis. Photosynthesis Research. 119, 3-14. 

 

Dietze MC & Matthes JH. (2014) A general ecophysiological framework for modelling the 

impact of pests and pathogens on forest ecosystems. Ecology Letters, 17, 1418-26. 

 

Dubayah R, et al., (2014) GEDI: The global ecosystem dynamics investigation. AGU Fall 

Meting. 

 

Dybzinski R, Farrior C, Wolf A, Reich PB & Pacala SW. (2011). Evolutionarily stable 

strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and 

nitrogen: an analytically tractable, individual-based model and quantitative comparisons to 

data. American Naturalist 177, 153–166. 

 

Eitel JU, Höfle B, Vierling LA, Abellán A, Asner GP, Deems JS, Glennie CL, Joerg PC, 

LeWinter AL, Magney TS, Mandlburger G. (2016) Beyond 3-D: The new spectrum of lidar 

applications for earth and ecological sciences. Remote Sensing of Environment, 186, 372-392. 

 

Enquist BJ, West GB, Brown JH (2009). A general quantitative theory of forest structure and 

dynamics. Proceedings of the National Academy of Sciences, 106, 7046–7051.  

 

Evans MR (2012) Modelling ecological systems in a changing world. Philosophical. 

Transactions of the Royal Society B-Biology, 36, 181-190. 

 

Farrior CE, Bohlman SA, Hubbell S, Pacala SW (2016) Dominance of the suppressed: 

Power-law size structure in tropical forests. Science, 8, 155-157. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

Farrior CE, Rodriguez-Iturbe I, Dybzinski R, Levin SA, and Pacala SW. (2015). Decreased water 

limitation under elevated CO2 amplifies potential for forest carbon sinks. Proceedings of the National 

Academy of Sciences of the United States of America 112, 7213–7218. 

 

Farrior CE, Dybzinski R, Levin SA, Pacala SW (2015). Competition for water and light in 

closed-canopy forests: a tractable model of carbon allocation with implications for carbon 

sinks. The American Naturalist, 181, 314-30. 

 

Fatichi S, Leuzinger S, Körner C. (2014) Moving beyond photosynthesis: from carbon source 

to sink‐driven vegetation modeling. New Phytologist, 201, 1086-95. 

 

Feeley KJ, Davies SJ, Ashton PS, Bunyavejchewin S, Supardi MNN, Kassim AR, Tan S, 

Chave J 2007. The role of gap phase processes in the biomass dynamics of tropical forests. 

Proceedings of the Royal Society B-Biological Sciences, 274, 2857-2864. 

 

Fischer R, Bohn F, de Paula MD, et al., (2016) Lessons learned from applying a forest gap 

model to understand ecosystem and carbon dynamics of complex tropical forests. Ecological 

Modelling, 326, 124-133. 

 

Fisher RA, Williams M,  Lobo do Vale R, da Costa AL, Meir P. (2006) Evidence from 

Amazonian forests is consistent with isohydric control of leaf water potential. Plant, Cell & 

Environment, 29, 151-65. 

 

Fisher RA, Williams M, da Costa AL, Malhi Y, da Costa RF, Almeida S, Meir P. (2007) The 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

response of an Eastern Amazonian rain forest to drought stress: results and modelling 

analyses from a throughfall exclusion experiment. Global Change Biology, 13, 2361-78. 

 

Fisher RA, McDowell N, Purves D, Moorcroft P, Sitch S, Cox P, Huntingford C, Meir P, Ian 

Woodward F.  (2010) Assessing uncertainties in a second‐ generation dynamic vegetation 

model caused by ecological scale limitations. New Phytologist, 187, 666-81. 

 

Fisher RA, Muszala S, Verteinstein M, Lawrence P, Xu C, McDowell NG, Knox RG, Koven 

C, Holm J, Rogers BM, Lawrence D. (2015) Taking off the training wheels: the properties of 

a dynamic vegetation model without climate envelopes. Geoscientific  Model Development, 

8, 3293-357. 

 

Fisk JP, Hurtt GC, Chambers JQ, Zeng H, Dolan KA, Negrón-Juárez RI (2013). The impacts of 

tropical cyclones on the net carbon balance of eastern US forests (1851–2000). Environmental 

Research Letters, 8(4), 045017.  

 

Fisk JP (2015). Net effects of disturbance: spatial, temporal, and societal dimensions of forest 

disturbance and recovery on terrestrial carbon balance. PhD Thesis, University of Maryland. 

 

Flanagan S, Hurtt G, Fisk J, Sahajpal R, Hansen M, Dolan K, et al., (2016). Potential Vegetation and 

Carbon Redistribution in Northern North America from Climate Change. Climate, 4, 2–13.  

 

Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A. (1996) An integrated 

biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. 

Global Biogeochemical Cycles, 10, 603-28. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

Fyllas NM, Gloor E, Mercado LM et al., (2014) Analysing Amazonian forest productivity 

using a new individual and trait-based model (TFS v. 1). Geoscientific Model Development, 

7, 1251-1269. 

 

Garrity SR, Meyer K, Maurer KD, Hardiman B, Bohrer G. Estimating plot-level tree 

structure in a deciduous forest by combining allometric equations, spatial wavelet analysis 

and airborne LiDAR. Remote Sensing Letters, 3, 443-51. 

 

Garrity SR, Allen CD, Brumby SP, Gangodagamage C, McDowell NG, Cai DM  (2013) 

Quantifying tree mortality in a mixed species woodland using multitemporal high spatial 

resolution satellite imagery. Remote Sensing of Environment, 129, 54-65. 

 

Gentine P, Guérin M, Uriarte M, McDowell NG, Pockman WT. (2015). An allometry-based 

model of the survival strategies of hydraulic failure and carbon starvation. Ecohydrology, 9, 

529–546. 

 

Gilad E, Shachak M, Meron E (2007). Dynamics and spatial organization of plant 

communities in water-limited systems. Theoretical population biology, 72, 214-230. 

 

Goudriaan J (1977) Crop Micrometeoroloqy: A Simulation Study. (Wageningen; 

Wageningen Center for Agricultural Publishing and Documentation). 

 

Guanter L, Köhler P, Walther S, Zhang Y (2016). Recent advances in global monitoring of 

terrestrial sun-induced chlorophyll fluorescence. In Geoscience and Remote Sensing 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Symposium (IGARSS), 2016 IEEE International (pp. 1714-1716). IEEE 

 

Hansis E, Davis SJ, Pongratz J (2015) Relevance of methodological choices for accounting of 

land use change carbon fluxes, Global Biogeochemical Cycles, 29, 1230-1246. 

 

Hansen MC, DeFries RS, Townshend JRG, Sohlberg R, Dimiceli C, Carroll, M (2002) 

Towards an operational MODIS continuous field of percent tree cover algorithm: examples 

using AVHRR and MODIS data. Remote Sensing of Environment, 83, 303-319. 

 

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, 

Stehman SV, Goetz SJ, Loveland TR, Kommareddy A. (2013) High-resolution global maps 

of 21st-century forest cover change. Science, 342, 850-853. 

 

Hantson S, Arneth A, Harrison SP, Kelley DI, Prentice IC, Rabin SS, Archibald S, 

Mouillot F, Arnold SR, Artaxo P, Bachelet D. (2016) The status and challenge of 

global fire modelling. Biogeosciences, 13, 3359-75. 

 

Haverd V,  Smith B, Cook GD, Briggs PR, Nieradzik L, Roxburgh SR, Liedloff A, Meyer CP, 

Canadell JG (2013). A stand-alone tree demography and landscape structure module for Earth system 

models. Geophysical Research Letters, 40, 5234-5239.  

 

Hazeleger W, Severijns C, Semmler T et al., (2010) EC-Earth: A Seamless Earth System Prediction 

Approach in Action. Bulletin of the American Meteorological Society, 91, 1357-1363. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Hicke JA, Allen CD, Desai A, Dietze MC, Hall RJ, Hogg ET, Kashian DM, Moore D, Raffa K, 

Sturrock R, Vogelmann J. (2012) The effects of biotic disturbances on carbon budgets of North 

American forests. Global Change Biology, 18, 7-34. 

 

Hickler T, Prentice IC, Smith B, Sykes MT & Zaehle, S (2006). Implementing plant 

hydraulic architecture within the LPJ Dynamic Global Vegetation Model. Global Ecology 

and Biogeography, 15, 567-577. 

 

Hoffman, FM, Koven CD,  Keppel-Aleks G,  Lawrence DM,  Riley WJ , Randerson JT et al., (2017), 

International Land Model Benchmarking (ILAMB) 2016 Workshop Report, DOE/SC-0186, U.S. 

Department of Energy, Office of Science, Germantown, Maryland, USA,  

 

Hoffmann WA, Solbrig, OT (2003) The role of topkill in the differential response of savanna 

woody species to fire. Forest Ecology and Management, 180, 273-286. 

 

Hoffmann WA, Geiger EL, Gotsch, SG, Rossatto DR, Silva LC, Lau OL, Haridasan M, 

Franco, AC (2012) Ecological thresholds at the savanna‐forest boundary: how plant traits, 

resources and fire govern the distribution of tropical biomes. Ecology Letters, 15, 759-768. 

 

Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque JF, Large WG, 

Lawrence D, Lindsay K, Lipscomb WH. (2013) The community earth system model: a 

framework for collaborative research. Bulletin of the American Meteorological Society, 94, 

1339-60. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Hurtt GC, Moorcroft PR, Pacala SW,  Levin SA (1998) Terrestrial models and global change: 

challenges for the future. Global Change Biology, 4, 581–590. 

 

Hurtt GC, Dubayah R, Drake J, Moorcroft P, Pacala SW, Blair JB, Fearon MG (2004). Beyond 

potential vegetation: combining lidar data and a height-structured model for carbon studies. 

Ecological Applications, 14, 873–883. 

 

Hurtt GC, Frolking S, Fearon MG, Moore III B, Shevliakova E, Malyshev S, Pacala SW, 

Houghton RA (2006) The underpinnings of land-use history: Three centuries of global 

gridded land-use transitions, wood harvest activity, and resulting secondary lands, Global 

Change Biology, 12, 1208-1229. 

 

Hurtt GC, Fisk J, Thomas R, Dubayah R, Moorcroft P, Shugart HH (2010). Linking models and 

data on vegetation structure. Journal of Geophysical Research, 115, 1–11. 

 

Hurtt, GC, Chini L, Frolking S, et al., (2011) Harmonization of land-use scenarios for the 

period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and 

resulting secondary lands. Climatic Change, 109, 117–16 

 

Hurtt GC, Wickland D, Jucks K et al., (2014). NASA carbon monitoring system: Prototype 

Monitoring, Reporting, and Verification (1–37). 

 

Hurtt GC, Thomas RQ, Fisk JP, Dubayah RO, Sheldon, SL (2016) The Impact of Fine-Scale 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Disturbances on the Predictability of Vegetation Dynamics and Carbon Flux. PLoS ONE, 11, 

e0152883. 

 

Ibanez I, Clark JS, Dietze MC. (2008) Evaluating the sources of potential migrant species: 

implications under climate change. Ecological Applications, 18, 1664-78. 

 

Ibáñez I, Silander JA, Wilson AM, LaFleur N, Tanaka N, Tsuyama I. (2009) 

Multivariate forecasts of potential distributions of invasive plant species. 

Ecological Applications, 19, 359-75. 

 

Ivanov VY, Fatichi S, Jenerette GD, Espeleta JF, Troch PA, Huxman TE. (2010) Hysteresis 

of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation.  Water 

Resources Research, 1, 46.9  

  

Ivanov VY, Hutyra LR, Wofsy SC, Munger JW, Saleska SR, de Oliveira RC, de Camargo 

PB. (2012) Root niche separation can explain avoidance of seasonal drought stress and 

vulnerability of overstory trees to extended drought in a mature Amazonian forest. Water 

Resources Research, 48, 12. 

 

Janott M, Gayler S, Gessler A, Javaux M, Klier C,  Priesack E (2011) A one-dimensional 

model of water flow in soil-plant systems based on plant architecture. Plant and Soil, 341, 

233-256. 

 

Joetzjer E, Delire C, Douville H, Ciais P, Decharme B, Fisher R, Christoffersen B, Calvet JC, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

da Costa AC, Ferreira LV, Meir P (2014) Predicting the response of the Amazon rainforest to 

persistent drought conditions under current and future climates: a major challenge for global 

land surface models. Geoscientific Model Development, 10, 2933-50. 

 

Jönsson AM, Schroeder LM, Lagergren F, Anderbrandt O, Smith B  (2012). Guess the impact of Ips 

typographus—An ecosystem modelling approach for simulating bark beetle outbreaks. Agricultural & 

Forest Meteorology, 166-167, 188-200.  

 

Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O'Connor 

FM, Andres RJ, Bell C, Boo KO (2011), The HadGEM2-ES implementation of CMIP5 

centennial simulations, Geoscientific Model Development, 4, 543-570. 

 

Jucker T, Caspersen J, Chave J, Antin C, Barbier N, Bongers F, Higgins, SI (2017), Allometric 

equations for integrating remote sensing imagery into forest monitoring programmes, Global 

change biology, 23, 177-190. 

 

Jupp TE, Twiss SD (2006) A physically motivated index of subgrid‐scale pattern. Journal of 

Geophysical Research: Atmospheres, 111(D19). 

 

Keenan TF & Niinemets Ü (2016) Global leaf trait estimates biased due to plasticity in the 

shade. Nature Plants, 3, 16201. 

 

Kim Y, Knox RG, Longo M, Medvigy D, Hutyra LR, Pyle EH, Wofsy SC, Bras RL, 

Moorcroft PR (2012). Seasonal carbon dynamics and water fluxes in an Amazon rainforest. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Global Change Biology, 18, 1322–1334.  

 

Knox RG, Longo M, Swann ALS, Zhang K, Levine NM, Moorcroft PR, Bras RL (2015) 

Hydrometeorological effects of historical land-conversion in an ecosystem-atmosphere model 

of Northern South America. Hydrological Earth System Science, 19, 241–273.  

 

Krinner G, Viovy N, de Noblet‐ Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, 

Sitch S, Prentice IC. (2005) A dynamic global vegetation model for studies of the coupled 

atmosphere‐ biosphere system. Global Biogeochemical Cycles. 1, 19, GB1015. 

 

Konings AG, Gentine P (2016) Global variations in ecosystem-scale isohydricity. Global 

Change Biology 23, 891-905. 

 

Koven CD, Chambers JQ, Georgiou K, Knox R, Negron-Juarez R, Riley WJ, Arora VK, 

Brovkin V, Friedlingstein P, Jones CD (2015). Controls on terrestrial carbon feedbacks by 

productivity vs. turnover in the CMIP5 Earth System Models. Biogeosciences Discussions, 

12, 5211-5228. 

 

Lagergren F, Jönsson AM, Blennow K, Smith B. (2012). Implementing storm damage in a dynamic 

vegetation model for regional applications in Sweden. Ecological Modelling, 247, 71-82.  

 

Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Zeng X, 

Yang ZL, Levis S, Sakaguchi K, Bonan GB. (2011) Parameterization improvements and 

functional and structural advances in version 4 of the Community Land Model. Journal of 

Advances in Modeling Earth Systems. 3(1), M03001 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

Lawrence DM, Hurtt GC, Arneth A, Brovkin V, Calvin KV, Jones AD, Jones CD, Lawrence 

PJ, de Noblet-Ducoudré N, Pongratz J, Seneviratne SI. The Land Use Model Intercomparison 

Project (LUMIP): Rationale and experimental design, Geosci. Model Dev. Discuss, doi: 

10.5194. 

 

Lawrence PJ, Feddema JJ, Bonan GB, Meehl GA, O’Neill BC, Oleson KW, Levis S, 

Lawrence DM, Kluzek E, Lindsay K, Thornton PE. (2012) Simulating the biogeochemical 

and biogeophysical impacts of transient land cover change and wood harvest in the 

Community Climate System Model (CCSM4) from 1850 to 2100. Journal of Climate. 25, 

3071-95. 

 

Levine NM, Zhang K, Longo M, Baccini A, Phillips OL, Lewis SL, Alvarez-Dávila E, de 

Andrade ACS, Brienen RJ, Erwin TL, Feldpausch TR (2016) Ecosystem heterogeneity 

determines the ecological resilience of the Amazon to climate change. Proceedings of the 

National Academy of Sciences, 113, 793-797. 

 

Lewis SL, Phillips OL, Sheil D, Vinceti B, Baker TR, Brown S, Graham AW, Higuchi N, 

Hilbert DW, Laurance WF, Lejoly J (2004) Tropical forest tree mortality, recruitment and 

turnover rates: calculation, interpretation and comparison when census intervals vary. Journal 

of Ecology, 92, 929-944. 

 

LeBauer DS, Wang D, Richter KT, Davidson CC, Dietze MC (2013) Facilitating feedbacks 

between field measurements and ecosystem models. Ecological Monographs, 83, 133-54. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Lefsky MA, Harding DJ, Keller M, Cohen WB, Carabajal CC, Del Bom Espirito‐Santo F, 

Hunter MO, de Oliveira, R (2005) Estimates of forest canopy height and aboveground 

biomass using ICESat. Geophysical Research Letters, 32, L22S02 

 

Lines ER, Coomes DA Purves DW (2010). Influences of forest structure, climate and species 

composition on tree mortality across the eastern US. PLoS One, 5, p.e13212. 

 

Lindeskog M, Arneth A, Bondeau A, Waha K, Seaquist J, Olin S, Smith B (2013) Implications of 

accounting for land use in simulations of ecosystem services and carbon cycling in Africa. Earth 

System Dynamics 4, 385-407. 

 

Lischke Heike, Niklaus E Zimmermann, Janine Bolliger, Sophie Rickebusch, Thomas J 

Löffler. (2006) TreeMig: a forest-landscape model for simulating spatio-temporal patterns 

from stand to landscape scale. Ecological Modelling, 199, 409-420. 

 

Liou KN. An Introduction to Atmospheric Radiation. New York: Academic Press, 2002. 

 

Lokupitiya E, Denning AS, Schaefer K, Ricciuto D, Anderson R, Arain MA, Baker I, Barr 

AG, Chen G, Chen JM, Ciais P. (2016) Carbon and energy fluxes in cropland ecosystems: a 

model-data comparison. Biogeochemistry, 129, 53-76. 

 

Luo YQ, Randerson JT, Abramowitz G, Bacour C, Blyth E, Carvalhais N, Ciais P, 

Dalmonech D, Fisher JB, Fisher R, Friedlingstein P. (2012) A framework for benchmarking 

land models. Biogeosciences, 9, 3857-3874. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Mackay DS, Roberts DE, Ewers BE, Sperry JS, McDowell NG, Pockman, WT (2015). 

Interdependence of chronic hydraulic dysfunction and canopy processes can improve 

integrated models of tree response to drought. Water Resources Research, 51, 6156-6176. 

 

Maréchaux I, Bartlett MK, Gaucher P, Sack L, Chave J (2016) Causes of variation in leaf-

level drought tolerance within an Amazonian forest. Journal of Plant Hydraulics, 3, e004. 

 

Matheny AM, Bohrer G, Garrity SR, Morin TH, Howard CJ, Vogel CS (2015) Observations 

of stem water storage in trees of opposing hydraulic strategies. Ecosphere 6, 1-13 

 

Matheny AM, Fiorella RP, Bohrer G, Poulsen CJ, Morin TH, Wunderlich A, Vogel CS, 

Curtis PS (2016) Contrasting strategies of hydraulic control in two codominant temperate tree 

species. Ecohydrology, e1815.  doi: 10.1002/eco.1815 

 

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, 

West A, Williams DG Yepez EA (2008) Mechanisms of plant survival and mortality during 

drought: why do some plants survive while others succumb to drought?  New Phytologist, 

178, 719-739. 

 

McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M (2011) The 

interdependence of mechanisms underlying climate-driven vegetation mortality. Trends in 

Ecology & Evolution, 26, 523-532. 

 

McDowell NG, Fisher RA, Xu C, Domec JC, Hölttä T, Mackay DS, Sperry JS, Boutz A, 

Dickman L, Gehres N, Limousin JM (2013) Evaluating theories of drought-induced 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

vegetation mortality using a multimodel–experiment framework. New Phytologist, 200, 304-

321. 

 

McDowell NG, Coops NC, Beck P. et al.   (2015)  Global satellite monitoring of climate-

induced vegetation disturbances.  Trends in Plant Science, 20, 114–123. 

 

Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft, PR (2009) Mechanistic 

scaling of ecosystem function and dynamics in space and time: Ecosystem Demography 

model version 2. Journal of Geophysical Research: Biogeosciences, 114(G1). 

 

Medvigy D, Moorcroft PR (2012) Predicting ecosystem dynamics at regional scales: an 

evaluation of a terrestrial biosphere model for the forests of northeastern North America, 

Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 

367, 222-235.  

 

Medvigy D, Clark KL, Skowronski NS, Schäfer KVR (2012) Simulated impacts of insect 

defoliation on forest carbon dynamics. Environmental Research Letters, 7.4, 045703. 

 

Medvigy D, Jeong SJ, Clark KL, Skowronski NS, Schäfer KV (2013). Effects of seasonal 

variation of photosynthetic capacity on the carbon fluxes of a temperate deciduous forest. 

Journal of Geophysical Research: Biogeosciences, 118, 1703-1714. 

 

Melton JR & Arora VK (2016) Competition between plant functional types in the Canadian 

Terrestrial Ecosystem Model (CTEM) v. 2.0. Geoscientific Model Development, 9, 323-361. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Mercado LM, Huntingford C, Gash JH, Cox, PM, Jogireddy V (2007). Improving the 

representation of radiation interception and photosynthesis for climate model applications. 

Tellus, 59, 553-565. 

 

Meron E, Gilad E, von Hardenberg J, Shachak M, Zarmi Y (2004) Vegetation patterns along 

a rainfall gradient. Chaos, Solitons & Fractals, 19, 367-376. 

 

Meron E (2011) Modeling dryland landscapes. Mathematical Modelling of Natural 

Phenomena, 6, 163-187. 

 

Miller AD, Dietze MC, DeLucia EH, Anderson‐Teixeira KJ. (2016) Alteration of forest 

succession and carbon cycling under elevated CO2. Global Change Biology, 22, 351-63. 

 

Moorcroft PR, Hurtt GC, Pacala SW.  (2001) A method for scaling vegetation dynamics: the 

ecosystem demography model (ED). Ecological Monographs, 71, 557-86. 

 

Moorcroft PR. How close are we to a predictive science of the biosphere? (2006) Trends in 

Ecology & Evolution, 21, 400-7. 

 

Morton DC, Rubio J, Cook BD, Gastellu-Etchegorry JP, Longo M, Choi H, Hunter MO, 

Keller, M (2015) Amazon forest structure generates diurnal and seasonal variability in light 

utilization. Biogeosciences Discussions, 12, 19043-19072  

 

Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin  S, 

Davies S, Foster R, Gunatilleke S, Gunatilleke N, Harms KE (2006) Testing metabolic 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. 

Ecology Letters, 9, 575-588. 

 

Nabel JE (2015) Upscaling with the dynamic two-layer classification concept (D2C): 

TreeMig-2L, an efficient implementation of the forest-landscape model TreeMig. 

Geoscientific Model Development, 8, 3563-3577. 

 

Naudts K, Ryder J, McGrath MJ, Otto J, Chen Y, Valade A, Bellasen V, Berhongaray G, 

Bönisch G, Campioli M, Ghattas J (2015) A vertically discretised canopy description for 

ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes. 

Geoscientific Model Development, 8, 2035-2065. 

 

Norman JM, Perry SG, Fraser AB, Mach W. (1979) Remote sensing of canopy structure. In 

Proceedings of the Nth Conference on Agricultural and Forest Meteorology and the 4th 

Conference on Biometeorology, 184-5 

      

Oleson K, Lawrence D, Bonan G, Drewniak E, Huang M, Koven C, Levis S, Li F, Riley W, 

Subin Z, Swenson S, Thornton P, Bozbiyik A, Fisher R, Heald C, Kluzek E, Lamarque J, 

Lawrence P, Leung L, Lipscomb W, Muszala S, Ricciuto D, Sacks W, Sun Y, Tang J,  Yang 

Z (2013).  Technical description of version 4.5 of the Community Land Model (CLM), 

NCAR Technical Note NCAR/TN-503+STR, 420 pp., doi:10.5065/D6RR1W7M.  

 

Pacala SW, Tilman D (1994) Limiting similarity in mechanistic and spatial models of plant 

competition in heterogeneous environments. American Naturalist, 143, 222-257. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Pacala SW, Canham CD, Saponara  J, Silander JA, Kobe RK, Ribbens E (1996) Forest 

models defined by field measurements: Estimation, error analysis and dynamics. Ecological 

Monographs 66, 1-43. 

 

Pachzelt A, Forrest M, Rammig A, Higgins SI, Hickler T (2015) Potential impact of large ungulate 

grazers on African vegetation, carbon storage and fire regimes. Global Ecology & Biogeography 24, 

991-1002. 

 

Pappas C, Fatichi S, Burlando P (2016) Modeling terrestrial carbon and water dynamics 

across climatic gradients: does plant trait diversity matter? New Phytologist, 209, 137-151. 

 

Pavlick R, Drewry DT, Bohn K, Reu B, Kleidon A (2013) The Jena Diversity-Dynamic 

Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial 

biogeography and biogeochemistry based on plant functional trade-offs. Biogeosciences, 10, 

4137-77. 

 

Phillips OL, Van Der Heijden G, Lewis SL, López‐González G, Aragão LE, Lloyd J, 

Malhi Y, Monteagudo A, Almeida S, Dávila EA, Amaral, I (2010) Drought–mortality 

relationships for tropical forests. New Phytologist, 187, 631-646 

 

Plaut JA, Yepez EA, Hill J, Pangle R, Sperry JS, Pockman WT, Mcdowell NG (2012) 

Hydraulic limits preceding mortality in a piñon–juniper woodland under experimental 

drought. Plant, Cell & Environment, 35, 1601-1617. 

 

Pongratz J, Reick CH, Raddatz T, Claussen M (2009), Effects of anthropogenic land cover 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

change on the carbon cycle of the last millennium, Global Biogeochemical Cycles, 

23(GB4001), doi:10.1029/2009GB003488. 

 

Powell TL, Galbraith DR, Christoffersen BO, Harper A, Imbuzeiro H, Rowland L, Almeida 

S, Brando PM, Costa AC, Costa MH, Levine NM (2013) Confronting model predictions of 

carbon fluxes with measurements of Amazon forests subjected to experimental drought. New 

Phytologist. 200, 350-365. 

 

Poyatos R, Aguadé D, Galiano L, Mencuccini M, Martínez-Vilalta J (2013) Drought induced 

defoliation and long periods of near‐zero gas exchange play a key role in accentuating 

metabolic decline of Scots pine. New Phytologist, 200, 388-401. 

 

Purves DW, Lichstein JW, Strigul NG, Pacala SW (2008) Predicting and understanding 

forest dynamics using a simple tractable model. Proceedings of the National Academy of 

Sciences, 105, 17018-17022. 

 

Purves D, Pacala S. (2008) Predictive models of forest dynamics. Science, 320, 1452-3. 

 

Reich PB (2014). The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto. 

Journal of Ecology, 102, 275-301. 

 

Reich PB, Rich RL, Lu X, Wang YP, Oleksyn J  (2014) Biogeographic variation in evergreen 

conifer needle longevity and impacts on boreal forest carbon cycle projections. Proceedings 

of the National Academy of Sciences, 111, 13703-13708. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

Rodriguez‐Iturbe I, D'odorico P, Porporato A, Ridolfi, L (1999). On the spatial and temporal 

links between vegetation, climate, and soil moisture. Water Resources Research, 35, 3709-

3722. 

 

Roy SB, Hurtt GC, Weaver CP, Pacala SW (2003). Impact of historical land cover change on the 

July climate of the United States. Journal of Geophysical Research, 108(D24), 14. 

http://doi.org/10.1029/2003JD003565 

 

Sato, H, Ito A. Kohyama T. (2007). SEIB-DGVM: A new dynamic global vegetation model 

using a spatially explicit individual-based approach. Ecological Modelling, 200, 279-307. 

 

Sato H (2009). Simulation of the vegetation structure and function in a Malaysian tropical 

rain forest using the individual-based dynamic vegetation model SEIB-DGVM.  Forest 

Ecology and Management, 257, 2277-2286. 

 

Sato, H, Kobayahi H, Delbart N (2010). Simulation study of the vegetation structure and 

function in eastern Siberian larch forests using the individual-based vegetation model SEIB-

DGVM. Forest Ecology and Management, 259, 301-311. 

 

Sato H, Ise T (2012). Effect of plant dynamic processes on African vegetation responses to 

climate change: Analysis using the spatially explicit individual-based dynamic global 

vegetation model (SEIB-DGVM). Journal of Geophysical Research-Biogeosciences 117, 

G3017 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Sakschewski B, Bloh W, Boit A, Rammig A, Kattge J, Poorter L, Peñuelas J, Thonicke K 

(2015) Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic 

global vegetation model. Global Change Biology. 21, 2711-2725. 

 

Scanlon TM, Caylor KK, Levin SA, Rodriguez-Iturbe I (2007) Positive feedbacks promote 

power-law clustering of Kalahari vegetation. Nature, 449, 209-212. 

 

Sanderson BM, Knutti R, Caldwell P (2015) A representative democracy to reduce 

interdependency in a multimodel ensemble. Journal of Climate,  28, 5171-94. 

 

Scherstjanoi M, Kaplan JO, Thürig E, Lischke H. GAPPARD: a computationally efficient 

method of approximating gap-scale disturbance in vegetation models. Geoscientific Model 

Development, 6,  1517-1542. 

 

Scheiter S, Langan L, Higgins SI. (2012) Next‐generation dynamic global vegetation models: 

learning from community ecology. New Phytologist, 198, 957-969. 

 

Schenk HJ (2006) Root competition: beyond resource depletion. Journal of Ecology, 94, 725-

739. 

 

Schwalm CR, Williams CA, Schaefer K, Anderson R, Arain MA, Baker I, Barr A, Black TA, 

Chen G, Chen JM, Ciais P. (2010) A model‐data inter-comparison of CO2 exchange across 

North America: Results from the North American Carbon Program site synthesis. Journal of 

Geophysical Research: Biogeosciences, 115(G3). 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in 

competition among plants. Oecologia, 113, 447-455. 

 

Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration.  International 

Institute of Remote Sensing, 6, 1335-1372.  

 

Serbin SP, Singh A, Desai AR, Dubois SG, Jablonski AD, Kingdon CC, Kruger EL, 

Townsend PA. (2015) Remotely estimating photosynthetic capacity, and its response to 

temperature, in vegetation canopies using imaging spectroscopy. Remote Sensing of 

Environment, 167, 78-87. 

 

Shachak M, Boeken B, Groner E, Kadmon R, Lubin Y, Meron E, Ne'Eman G, Perevolotsky 

A, Shkedy Y, Ungar ED (2008). Woody species as landscape modulators and their effect on 

biodiversity patterns. BioScience, 58, 209-221. 

 

Shevliakova, E, Pacala SW, Malyshev S, Hurtt GC,  Milly PCD, Caspersen JP, Sentman LT,  

Fisk JP, Wirth C, Crevoisier C. (2009) Carbon cycling under 300 years of land use change: 

Importance of the secondary vegetation sink. Global Biogeochemical Cycles, 23(GB2022), 

doi:10.1029/2007GB003176. 

 

Shiklomanov AN, Dietze MC, Viskari T, Townsend PA, Serbin, SP (2016). Quantifying the 

influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian 

approach to RTM inversion. Remote Sensing of Environment, 183, 226-238. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Simard M, Pinto N, Fisher JB, Baccini A (2011) Mapping forest canopy height globally with 

spaceborne lidar. Journal of Geophysical Research: Biogeosciences, 116(G4). 

 

Singh A, Serbin SP, McNeil BE, Kingdon CC, Townsend PA (2015). Imaging spectroscopy 

algorithms for mapping canopy foliar chemical and morphological traits and their 

uncertainties. Ecological Applications, 25, 2180-2197 

 

Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan J, Levis S, Lucht W, Sykes 

M, Thonicke K, Venevsky S (2003). Evaluation of ecosystem dynamics, plant geography and 

terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model. Global Change Biology, 9, 

161-185. 

 

Shuman JK, Shugart HH, Krankina ON (2014) Testing individual-based models of forest 

dynamics: Issues and an example from the boreal forests of Russia. Ecological Modelling. 10, 

102-110. 

 

Shrestha RK, Arora VK, Melton JR. (2016) The sensitivity of simulated competition between 

different plant functional types to sub‐ grid‐ scale representation of vegetation in a land 

surface model. Journal of Geophysical Research: Biogeosciences, 121, 809-828 .  

 

Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the 

modelling of terrestrial ecosystems: comparing two contrasting approaches within European 

climate space. Global Ecology & Biogeography, 10, 621-637. 

 

Smith B., Samuelsson P., Wramneby A.,  Rummukainen, M. (2011) A model of the coupled dynamics 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications. Tellus 63A, 

87-106. 

 

Smith B, Wårlind D, Arneth A, Hickler T, Leadley P, Siltberg J, Zaehle S (2014).  Implications of 

incorporating N cycling and N limitations on primary production in an individual-based dynamic 

vegetation model. Biogeosciences, 11, 2027-2054. 

 

Smolander S & Stenberg P (2005) Simple parameterizations of the radiation budget of 

uniform broadleaved and coniferous canopies. Remote Sensing of Environment, 94, 355-63. 

 

Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by 

rhizosphere and xylem conductance: results from a model. Plant, Cell & Environment, 21, 

347-359. 

 

Sperry JS & Love DM (2015) What plant hydraulics can tell us about responses to 

climate‐change droughts. New Phytologist, 207, 14-27. 

Sperry JS, Venturas MD, Anderegg WR, Mencuccini M, Mackay DS, Wang Y, Love DM (2016) 

Predicting stomatal responses to the environment from the optimization of photosynthetic gain 

and hydraulic cost. Plant, Cell & Environment. doi: 10.1111/pce.12852  

Stark SC, Leitold V, Wu JL et al., (2012). Amazon forest carbon dynamics predicted by 

profiles of canopy leaf area and light environment. Ecology Letters, 15, 1406–1414.  

 

Stark SC, Enquist BJ, Saleska SR, Leitold V, Schietti J, Longo M, Alves LF, Camargo PB, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Oliveira RC (2015). Linking canopy leaf area and light environments with tree size 

distributions to explain Amazon forest demography. Ecology Letters, 18, 636–645. 

 

Stocker BD, Feissli F, Strassmann KM, Spahni R,  Joos F (2014) Past and future carbon 

fluxes from land use change, shifting cultivation and wood harvest, Tellus B, 66. 

 

Strigul, N., D. Pristinski, D. Purves, J. Dushoff, and S. Pacala. 2008. Scaling from trees to forests: 

tractable macroscopic equations for forest dynamics. Ecological Monographs 78:523–545. 

 

Swann ALS,  Longo M,  Knox RG,  Lee E, Moorcroft PR. Future deforestation in the 

Amazon and consequences for South American climate (2015). Agricultural Forest 

Meteorology, 214, 12–24.  

 

Thomas RQ, Hurtt GC, Schilz MH (2008). Using lidar data and a height-structured ecosystem 

model to estimate forest carbon stocks and fluxes over mountainous terrain. Canadian Journal of 

Remote Sensing, 34, S351–S363. 

 

Thomas RQ, Brookshire EN, Gerber S (2015). Nitrogen limitation on land: how can it occur 

in Earth system models? Global Change Biology, 21, 1777-1793. 

 

Thonicke K, Venevsky S, Sitch S, Cramer W (2001) The role of fire disturbance for global 

vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Global Ecology 

and Biogeography, 10, 661-677. 

 

Thonicke K, Spessa A, Prentice IC, Harrison SP, Dong L, Carmona-Moreno C. (2010) The 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas 

emissions: results from a process-based model. Biogeosciences, 7, 1991-2011. 

 

Trugman AT, Fenton NJ, Bergeron Y, Xu X, Welp LR, Medvigy D (2016), Climate, soil 

organic layer, and nitrogen jointly drive forest development after fire in the North American 

boreal zone. Journal of Advances in Modeling the Earth System, 8, 1180–1209. 

 

van Wijk, MT and Rodriguez‐Iturbe, I (2002) Tree‐grass competition in space and time: 

Insights from a simple cellular automata model based on ecohydrological dynamics. Water 

Resources Research, 38(9). 

 

Verheijen LM, Aerts R, Brovkin V, Cavender‐Bares J, Cornelissen JH, Kattge J, Bodegom 

PM (2015). Inclusion of ecologically based trait variation in plant functional types reduces 

the projected land carbon sink in an earth system model. Global Change Biology, 21, 3074-

3086. 

 

Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles 

for the terrestrial biosphere. Biogeosciences, 7, 2261-2282. 

 

Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase 

H, Abe M, Yokohata T, Ise T (2011). MIROC-ESM 2010: model description and basic 

results of CMIP5-20c3m experiments. Geoscientific Model Development, 4, 845-872. 

 

Weiss M, Miller PA, van den Hurk BJJM, van Noije T, Stefanescu S, Haarsma R, van Ulft 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

LH, Hazeleger W, Le Sager P, Smith B, Schurgers G (2014). Contribution of dynamic 

vegetation phenology to decadal climate predictability. Journal of Climate, 27, 8563-8577. 

 

Weng ES, Malyshev S, Lichstein JW, Farrior CE, Dybzinski R, Zhang T, Shevliakova E, 

Pacala S W (2015) Scaling from individual trees to forests in an Earth system modeling 

framework using a mathematically tractable model of height-structured competition. 

Biogeosciences, 12, 2655-2694.  

 

Weng E, Farrior CE, Dybzinski R, Pacala SW. (2016) Predicting vegetation type through 

physiological and environmental interactions with leaf traits: evergreen and deciduous forests 

in an earth system modeling framework. Global Change Biology. doi:10.1111/gcb.13542 

 

West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of 

plant vascular systems. Nature, 400, 664–667. 

 

Widlowski JL, Taberner M, Pinty B, Bruniquel‐Pinel V, Disney M, Fernandes R, 

Gastellu‐Etchegorry JP, Gobron N, Kuusk A, Lavergne T, Leblanc S (2007). Third Radiation 

Transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy 

reflectance models. Journal of Geophysical Research: Atmospheres, 112(D9). 

 

Widlowski JL, Mio C, Disney M, Adams J, Andredakis I, Atzberger C, Brennan J, Busetto L, 

Chelle M, Ceccherini G, Colombo R (2015) The fourth phase of the radiative transfer model 

intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing. Remote 

Sensing of Environment. 169, 418-437. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

Wilkenskjeld S, Kloster S, Pongratz J, Raddatz T, Reick C (2014) Comparing the influence 

of net and gross anthropogenic land-use and land-cover changes on the carbon cycle in the 

MPI-ESM, Biogeosciences, 11, 4817-4828. 

 

Williams M, Bond BJ, Ryan MG (2001) Evaluating different soil and plant hydraulic 

constraints on tree function using a model and sap flow data from ponderosa pine. Plant, Cell 

& Environment, 24, 679-690. 

 

Woodward FI, Lomas MR. (2004) Vegetation dynamics–simulating responses to climatic 

change. Biological Reviews, 79, 643-70. 

 

Wramneby A, Smith B, Samuelsson P (2010). Hotspots of vegetation-climate feedbacks 

under future greenhouse forcing in Europe. Journal of Geophysical Research 115, D21119. 

 

Xu C, Fisher R, Wullschleger SD, Wilson CJ, Cai M, McDowell NG. (2012) Toward a 

mechanistic modeling of nitrogen limitation on vegetation dynamics. PloS one, 7, e37914. 

 

Xu C, McDowell NG, Sevanto S, Fisher RA (2013). Our limited ability to predict vegetation 

dynamics under water stress. New Phytologist, 200, 298-300. 

 

Xu X, Medvigy D, Powers JS, Becknell J, Guan K (2016). Diversity in plant hydraulic traits 

explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry 

tropical forests. New Phytologist, 212, 80-95. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Zaehle S, Friend AD. (2010) Carbon and nitrogen cycle dynamics in the O‐CN land surface 

model: 1. Model description, site‐scale evaluation, and sensitivity to parameter estimates. 

Global Biogeochemical Cycles. 24(1). 

 

Zaehle S. & Dalmonech D. (2011). Carbon-nitrogen interactions on land at global scales: 

current understanding in modelling climate biosphere feedbacks. Current Opinion in 

Environmental Stability, 3, 311-320 

 

Zaehle S, Medlyn BE, De Kauwe MG, Walker AP, Dietze MC, Hickler T, Luo Y, Wang YP, 

El Masri B, Thornton P, Jain A (2014). Evaluation of 11 terrestrial carbon–nitrogen cycle 

models against observations from two temperate Free‐Air CO2 Enrichment Studies. New 

Phytologist, 202, 802-22. 

 

Zeppel MJ, Adams HD, Anderegg, WR (2011). Mechanistic causes of tree drought mortality: 

recent results, unresolved questions and future research needs. New Phytologist, 192, 800-

803. 

 

Zeppel M, Macinnis-Ng C, Palmer A, Taylor D, Whitley R, Fuentes S, Yunusa I, Williams M 

, Eamus, D (2008). An analysis of the sensitivity of sap flux to soil and plant variables 

assessed for an Australian woodland using a soil–plant–atmosphere model. Functional Plant 

Biology, 35, 509-520. 

 

Zhang K, Castanho ADA, Galbraith DR, Moghim S, Levine N, Bras RL, Coe M, Costa MH, 

Malhi Y, Longo M, Knox RG, McKnight S, Wang J, Moorcroft PR (2015). The fate of 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Amazonian ecosystems over the coming century arising from changes in climate, 

atmospheric CO2 and land-use. Global Change Biology, 21, 2569–2587.  

 

Tables 

Table 1:  Table of attributes of vegetation demographics models discussed in this paper. 

 

Figure Captions 

Figure 1: Organization of canopy schemes in four vegetation demographic models. Shades of 

yellow represent incident light levels, while shades of grey indicate alternative plant 

functional types (PFTs).  Boxes represent cohorts as represented by ED & ED2, LM3-PPA 

and CLM(ED).  Dotted cohort boundaries denote cohorts that belong to the understory, all of 

which receive identical light levels, in the PPA schemes of the LM3-PPA and CLM(ED) 

models.  Note that in the LM3-PPA there can be more than one understory layer, but in 

CLM(ED) there cannot.  In the cohort-based schemes, horizontal positioning is for illustrative 

purposes only and not represented by the model, which is one-dimensional. Dotted lines in 

the CLM(ED) figure illustrate within-canopy leaf levels resolved by the radiation transfer 

scheme. In the LM3-PPA, ‘z*’ indicates the cohort height above which canopy/understory 

status is defined. In the CLM(ED), there is no ‘z*’ threshold, and larger cohorts in the 

Model 

acronym 

Name Vegetation 

Representation 

Coupled to 

ESM? 

Stochastic? Canopy 

Structure 

Disturbance 

history patches? 

SEIB 

 

Spatially-Explicit 

Individual-Based model 

Individual MIROC-

ESM 

Yes Individuals No 

LPJ-GUESS Lund Potsdam Jena 

General Ecosystem 

Simulator 

Individual or 

Cohort 

EC-Earth, 

RCA-

GUESS 

Yes 

(optional 

for some 

processes) 

Flat-top Yes 

LM3-PPA 

 

Perfect Plasticity 

Approximation 

Cohort GFDL-ESM No PPA No 

ED Ecosystem Demography 

Model 

Cohort RAMS No Flat-top Yes 

ED2 

 

Ecosystem Demography 

model v2 

Cohort RAMS No Flat-top Yes 

CLM(ED) 

 

Community Land Model 

with Ecosystem 

Demography 

Cohort CESM No PPA Yes 
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understory may in principle be taller than the shorter cohorts in the canopy layer (reflecting 

imperfect competition processes, per Fisher et al., 2010).  Note that for ED-derived models 

(ED, ED2, CLM(ED)), cohort organization is illustrated only for a single patch, though each 

model represents a multitude of patches having different ages since disturbance within a 

single site.  

 

Figure 2:  Illustration of unresolved belowground resource partitioning issues in vegetation 

demographic models. Panels a) and b) show two alternative depictions of resource 

partitioning in an age-since-disturbance resolving (ED-type) model. In a) resources 

(water/nutrients) are resolved for each age-since-disturbance patch, meaning that different 

extraction levels can affect resource availability over the successional gradient, a situation 

made more likely by large spatial-scale disturbances. In b) all patches share a common pool, 

a situation more relevant to smaller (individual) scale disturbances.  Panel c) illustrates two 

mechanisms of water resource concentration in a semi-arid system, including greater 

infiltration rates near vegetation (differentially sized vertical arrows) and spatially extensive 

root systems that move water to the site of individual plants. Both allow greater local water 

availability than is possible using the grid cell mean soil moisture value. Panels d) and e) 

illustrate a mechanism for size asymmetric in resource competition. In d) two similar-sized 

root zones intersect, depleting the resource where they overlap. Since they are the same size, 

neither has an advantage. In e) the smaller root system has most of its resource uptake soil 

volume depleted, whereas the larger root system is only mildly affected by the overlap, thus 

the larger root system gains an asymmetric advantage analogous to that of large trees in the 

forest canopy competing for light.  
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Figure 3: Scale-dependence in extrapolating cohort-level mortality proxies to landscape-

scale predictions of mortality.  Panel a) illustrates a plausible multi-annual trajectory for 

mortality proxies throughout a chronic drought (solid line) and a hypothetical threshold 

whereby decline in this proxy is predictive of death (dashed line).  Panel b) illustrates 

potential evolution of between mortality proxies and numbers of individuals through time 

(left to right). Long dashes represent a threshold-based mortality algorithm, whereby all 

individuals in a given cohort die in the same timestep. Short dashes illustrate a scaling from 

individual to landscape where there is a low level of heterogeneity across individuals, and the 

dotted line illustrates a condition with higher heterogeneity. In this case, parts of the grid cell 

(or genetic population) experience mortality at much lower degrees of average stress, and 

others are resilient under a given set of climatic drivers.  As local mortality rates (gap scale) 

vary in comparison to landscape scale (entire forest), the slope of these lines requires 

calibration to a specific spatial scale.  
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