3,322 research outputs found

    The gradient discretisation method for linear advection problems

    Get PDF
    We adapt the Gradient Discretisation Method (GDM), originally designed for elliptic and parabolic partial differential equations, to the case of a linear scalar hyperbolic equations. This enables the simultaneous design and convergence analysis of various numerical schemes, corresponding to the methods known to be GDMs, such as finite elements (conforming or non-conforming, standard or mass-lumped), finite volumes on rectangular or simplicial grids, and other recent methods developed for general polytopal meshes. The scheme is of centred type, with added linear or non-linear numerical diffusion. We complement the convergence analysis with numerical tests based on the mass-lumped P1 conforming and non conforming finite element and on the hybrid finite volume method

    A unified analysis of elliptic problems with various boundary conditions and their approximation

    Full text link
    We design an abstract setting for the approximation in Banach spaces of operators acting in duality. A typical example are the gradient and divergence operators in Lebesgue--Sobolev spaces on a bounded domain. We apply this abstract setting to the numerical approximation of Leray-Lions type problems, which include in particular linear diffusion. The main interest of the abstract setting is to provide a unified convergence analysis that simultaneously covers (i) all usual boundary conditions, (ii) several approximation methods. The considered approximations can be conforming, or not (that is, the approximation functions can belong to the energy space of the problem, or not), and include classical as well as recent numerical schemes. Convergence results and error estimates are given. We finally briefly show how the abstract setting can also be applied to other models, including flows in fractured medium, elasticity equations and diffusion equations on manifolds. A by-product of the analysis is an apparently novel result on the equivalence between general Poincar{\'e} inequalities and the surjectivity of the divergence operator in appropriate spaces

    A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods

    Full text link
    We investigate the connections between several recent methods for the discretization of anisotropic heterogeneous diffusion operators on general grids. We prove that the Mimetic Finite Difference scheme, the Hybrid Finite Volume scheme and the Mixed Finite Volume scheme are in fact identical up to some slight generalizations. As a consequence, some of the mathematical results obtained for each of the method (such as convergence properties or error estimates) may be extended to the unified common framework. We then focus on the relationships between this unified method and nonconforming Finite Element schemes or Mixed Finite Element schemes, obtaining as a by-product an explicit lifting operator close to the ones used in some theoretical studies of the Mimetic Finite Difference scheme. We also show that for isotropic operators, on particular meshes such as triangular meshes with acute angles, the unified method boils down to the well-known efficient two-point flux Finite Volume scheme

    Non-adiabatic oscillations of fast-rotating stars: the example of Rasalhague

    Get PDF
    Early-type stars generally tend to be fast rotators. In these stars, mode identification is very challenging as the effects of rotation are not well known. We consider here the example of α\alpha Ophiuchi, for which dozens of oscillation frequencies have been measured. We model the star using the two-dimensional structure code ESTER, and we compute both adiabatic and non-adiabatic oscillations using the TOP code. Both calculations yield very complex spectra, and we used various diagnostic tools to try and identify the observed pulsations. While we have not reached a satisfactory mode-to-mode identification, this paper presents promising early results.Comment: 4 pages, 3 figures. SF2A 2017 proceeding

    Sequential resonant tunneling in quantum cascade lasers

    Full text link
    A model of sequential resonant tunneling transport between two-dimensional subbands that takes into account explicitly elastic scattering is investigated. It is compared to transport measurements performed on quantum cascade lasers where resonant tunneling processes are known to be dominating. Excellent agreement is found between experiment and theory over a large range of current, temperature and device structures

    Gravitational duality near de Sitter space

    Full text link
    Gravitational instantons ''Lambda-instantons'' are defined here for any given value Lambda of the cosmological constant. A multiple of the Euler characteristic appears as an upper bound for the de Sitter action and as a lower bound for a family of quadratic actions. The de Sitter action itself is found to be equivalent to a simple and natural quadratic action. In this paper we also describe explicitly the reparameterization and duality invariances of gravity (in 4 dimensions) linearized about de Sitter space. A noncovariant doubling of the fields using the Hamiltonian formalism leads to first order time evolution with manifest duality symmetry. As a special case we recover the linear flat space result of Henneaux and Teitelboim by a smooth limiting process.Comment: 13 pages, no figure - v2 contains only small redactional changes (one reference added) and is essentially the published versio

    On the "Causality Argument" in Bouncing Cosmologies

    Full text link
    We exhibit a situation in which cosmological perturbations of astrophysical relevance propagating through a bounce are affected in a scale-dependent way. Involving only the evolution of a scalar field in a closed universe described by general relativity, the model is consistent with causality. Such a specific counter-example leads to the conclusion that imposing causality is not sufficient to determine the spectrum of perturbations after a bounce provided it is known before. We discuss consequences of this result for string motivated scenarios.Comment: 4 pages, 1 figure, ReVTeX, to appear in Phys. Rev. Let
    corecore