57 research outputs found

    ON THE LIFE-HISTORY AND SYSTEMATIC POSITION OF THE ORGANISMS CAUSING DRY TOP ROT OF SUGAR CANE

    Get PDF
    Resumen en inglé

    No time to die: evolution of a post-reproductive life stage

    Get PDF
    In some species, permanent curtailment of reproduction part-way through the lifespan of adult females is a feature of their evolved life history. The existence of such a post-reproductive life stage is apparently rare; reasonably robust evidence for this is confined to only six species (humans, Asian elephants and four whales). That it occurs at all appears to contradict our view of natural selection operating to maximize fitness and special circumstances must exist to explain its occurrence. We evaluate the main hypotheses posited to explain the evolution of this life stage, why it occurs in a restricted group of animals, and why only in females. We bring together literature from multiple biological disciplines and levels of enquiry, ranging through evolutionary ecology, developmental biology, physiology, neuroscience, molecular biology, and human medicine. We conclude that while time-limited fertility is not in itself adaptive, the duration of subsequent survival is likely to be linked to inclusive fitness benefits. We present a new hypothesis which posits that the duration of female fertility in certain long-lived, highly encephalised species, with no post-natal oogenesis, is limited by the need for intense screening of oocyte mitochondria. This is required to support endothermy coupled with the very high energy requirement for the development and maintenance of the exceptionally large brain size required for complex social living. This limits the number and shelf-life of oocytes, creating an antagonistically pleotropic effect that is beneficial to the production of high performing offspring but carries the later life cost of time-limited female fertility. But the end of the fertile period is no time to die. Inclusive fitness benefits arising from protracted parental care of offspring, overlapping generations, and kin group structures means that continued survival of post-reproductive females is favoured by selection. We suggest further lines of research to test these ideas

    Technology-enhanced simulation for healthcare professionals: A meta-analysis

    Get PDF
    AimThere have been substantial changes in the simulation technology landscape, in particular virtual reality (VR), during the past decade, which have resulted in increased abundance and decreased cost. We therefore updated a previous meta-analysis conducted in 2011, aiming to quantify the impact of digital technology-enhanced simulation (T-ES) compared with traditional teaching in physicians, physicians-in-training, nurses, and nursing students.DesignWe conducted a meta-analysis consisting of randomized controlled trials published in English between January 2011 and December 2021 in peer-reviewed journals indexed in seven databases. Moderators for study duration, instruction, type of healthcare worker, type of simulation, outcome measure, and study quality rated by Medical Education Research Study Quality Instrument (MERSQI) score were included in our model and used to calculate estimated marginal means (EMMs).ResultsThe overall effect of T-ES was positive across the 59 studies included in the analysis compared with traditional teaching [overall effect size 0.80 (95% CI 0.60, 1.00)]. This indicates that T-ES is effective in improving outcomes across a wide variety of settings and participants. The impact of T-ES was found to be greatest for expert-rated product metrics such as procedural success, and process metrics such as efficiency, compared with knowledge and procedure time metrics.ConclusionsThe impacts of T-ES training on the outcome measures included in our study were greatest in nurses, nursing students and resident physicians. T-ES was strongest in studies featuring physical high-fidelity mannequins or centers, compared with VR sensory environment T-ES, though there was considerable uncertainty in all statistical analyses. Further high-quality studies are required to assess direct effects of simulation training on patient and public health outcomes

    The distribution of the Lansing Effect across animal species

    Get PDF
    Maternal senescence is the reduction in individual performance associated with increased maternal age at conception. When manifested on adult lifespan, this phenomenon is known as the “Lansing Effect.” Single-species studies report both maternal age-related increases and decreases in adult lifespan, but no comprehensive review of the literature has yet been undertaken to determine if the Lansing Effect is a widespread phenomenon. To address this knowledge gap, we performed a meta-analysis of maternal aging rates taken from all available published studies. We recovered 78 estimates from 22 studies representing 15 species. All studies taken together suggest a propensity for a Lansing Effect, with an estimated average effect of maternal age on offspring’s adult lifespan of between -17% and -22%, depending upon our specific choice of model. We failed to find a significant effect of animal class or insect order but given the oversampling of insect species in the published literature and the paucity of vertebrate studies, we infer that only rotifers and insects yet demonstrate a tendency toward expressing the phenomenon

    Fitness benefits of dietary restriction

    Get PDF
    Dietary restriction (DR) improves survival across a wide range of taxa yet remains poorly understood. The key unresolved question is whether this evolutionarily conserved response to temporary lack of food is adaptive. Recent work suggests that early-life DR reduces survival and reproduction when nutrients subsequently become plentiful, thereby challenging adaptive explanations. A new hypothesis maintains that increased survival under DR results from reduced costs of overfeeding. We tested the adaptive value of DR response in an outbred population of Drosophila melanogaster fruit flies. We found that DR females did not suffer from reduced survival upon subsequent re-feeding and had increased reproduction and mating success compared to their continuously fully fed (FF) counterparts. The increase in post-DR reproductive performance was of sufficient magnitude that females experiencing early-life DR had the same total fecundity as continuously FF individuals. Our results suggest that the DR response is adaptive and increases fitness when temporary food shortages cease

    Genetic background and thermal regime influence adaptation to novel environment in the seed beetle, Callosobruchus maculatus.

    Get PDF
    Climate change is associated with the increase in both the mean and variability of thermal conditions. Therefore, the use of more realistic fluctuating thermal regimes is the most appropriate laboratory method for predicting population responses to thermal heterogeneity. However, the long- and short-term implications of evolving under such conditions are not well understood. Here, we examined differences in key life-history traits among populations of seed beetles (Callosobruchus maculatus) that evolved under either constant control conditions or in an environment with fluctuating daily temperatures. Specifically, individuals from two distinct genetic backgrounds were kept for 19 generations at one of two temperatures, a constant temperature (T = 29 °C) or a fluctuating daily cycle (Tmean = 33 °C, Tmax = 40 °C, and Tmin = 26 °C), and were assayed either in their evolved environment or in the other environment. We found that beetles that evolved in fluctuating environments but were then switched to constant 29 °C conditions had far greater lifetime reproductive success compared with beetles that were kept in their evolved environments. This increase in reproductive success suggests that beetles raised in fluctuating environments may have evolved greater thermal breadth than control condition beetles. In addition, the degree of sexual dimorphism in body size and development varied as a function of genetic background, evolved thermal environment, and current temperature conditions. These results not only highlight the value of incorporating diel fluctuations into climate research but also suggest that populations that experience variability in temperature may be better able to respond to both short- and long-term changes in environmental conditions

    Transgenerational fitness effects of lifespan extension by dietary restriction in Caenorhabditis elegans

    Get PDF
    Dietary restriction (DR) increases lifespan in a broad variety of organisms and improves health in humans. However, long-term transgenerational consequences of dietary interventions are poorly understood. Here, we investigated the effect of DR by temporary fasting (TF) on mortality risk, age-specific reproduction and fitness across three generations of descendants in Caenorhabditis elegans. We show that while TF robustly reduces mortality risk and improves late-life reproduction of the individuals subject to TF (P0), it has a wide range of both positive and negative effects on their descendants (F1–F3). Remarkably, great-grandparental exposure to TF in early life reduces fitness and increases mortality risk of F3 descendants to such an extent that TF no longer promotes a lifespan extension. These findings reveal that transgenerational trade-offs accompany the instant benefits of DR, underscoring the need to consider fitness of future generations in pursuit of healthy ageing

    Fasting increases investment in soma upon refeeding at the cost of gamete quality in zebrafish

    Get PDF
    Fasting increases lifespan in invertebrates, improves biomarkers of health in vertebrates and is increasingly proposed as a promising route to improve human health. Nevertheless, little is known about how fasted animals use resources upon refeeding, and how such decisions affect putative trade-offs between somatic growth and repair, reproduction and gamete quality. Such fasting-induced trade-offs are based on strong theoretical foundations and have been recently discovered in invertebrates, but the data on vertebrates are lacking. Here, we report that fasted female zebrafish, Danio rerio, increase investment in soma upon refeeding, but it comes at a cost of egg quality. Specifically, an increase in fin regrowth was accompanied by a reduction in 24 h post-fertilization offspring survival. Refed males showed a reduction in sperm velocity and impaired 24 h post-fertilization offspring survival. These findings underscore the necessity of considering the impact on reproduction when assessing evolutionary and biomedical implications of lifespan-extending treatments in females and males and call for careful evaluation of the effects of intermittent fasting on fertilization

    Book reviews

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45933/1/357_2005_Article_BF01195682.pd
    • 

    corecore