67,523 research outputs found

    Anomalous diffusion in quantum Brownian motion with colored noise

    Get PDF
    Anomalous diffusion is discussed in the context of quantum Brownian motion with colored noise. It is shown that earlier results follow simply and directly from the fluctuation-dissipation theorem. The limits on the long-time dependence of anomalous diffusion are shown to be a consequence of the second law of thermodynamics. The special case of an electron interacting with the radiation field is discussed in detail. We apply our results to wave-packet spreading

    Benchmark Quantum Monte Carlo calculations of the ground-state kinetic, interaction, and total energy of the three-dimensional electron gas

    Get PDF
    We report variational and diffusion Quantum Monte Carlo ground-state energies of the three-dimensional electron gas using a model periodic Coulomb interaction and backflow corrections for N=54, 102, 178, and 226 electrons. We remove finite-size effects by extrapolation and we find lower energies than previously reported. Using the Hellman-Feynman operator sampling method introduced in Phys. Rev. Lett. 99, 126406 (2007), we compute accurately, within the fixed-node pproximation, the separate kinetic and interaction contributions to the total ground-state energy. The difference between the interaction energies obtained from the original Slater-determinant nodes and the backflow-displaced nodes is found to be considerably larger than the difference between the corresponding kinetic energies

    Heterocyst placement strategies to maximize growth of cyanobacterial filaments

    Full text link
    Under conditions of limited fixed-nitrogen, some filamentous cyanobacteria develop a regular pattern of heterocyst cells that fix nitrogen for the remaining vegetative cells. We examine three different heterocyst placement strategies by quantitatively modelling filament growth while varying both external fixed-nitrogen and leakage from the filament. We find that there is an optimum heterocyst frequency which maximizes the growth rate of the filament; the optimum frequency decreases as the external fixed-nitrogen concentration increases but increases as the leakage increases. In the presence of leakage, filaments implementing a local heterocyst placement strategy grow significantly faster than filaments implementing random heterocyst placement strategies. With no extracellular fixed-nitrogen, consistent with recent experimental studies of Anabaena sp. PCC 7120, the modelled heterocyst spacing distribution using our local heterocyst placement strategy is qualitatively similar to experimentally observed patterns. As external fixed-nitrogen is increased, the spacing distribution for our local placement strategy retains the same shape while the average spacing between heterocysts continuously increases.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Physical Biology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher-authenticated version will be available onlin

    Direct observation of charge order in triangular metallic AgNiO2 by single-crystal resonant X-ray scattering

    Full text link
    We report resonant X-ray scattering measurements on the orbitally-degenerate triangular metallic antiferromagnet 2H-AgNiO2 to probe the spontaneous transition to a triple-cell superstructure at temperatures below 365 K. We observe a strong resonant enhancement of the supercell reflections through the Ni K-edge. The empirically extracted K-edge shift between the crystallographically-distinct Ni sites of 2.5(3) eV is much larger than the value expected from the shift in final states, and implies a core-level shift of ~1 eV, thus providing direct evidence for the onset of spontaneous honeycomb charge order in the triangular Ni layers. We also provide band-structure calculations that explain quantitatively the observed edge shifts in terms of changes in the Ni electronic energy levels due to charge order and hybridization with the surrounding oxygens.Comment: 5 pages, 4 figure

    Hamiltonians for Reduced Gravity

    Get PDF
    A generalised canonical formulation of gravity is devised for foliations of spacetime with codimension n≄1n\ge1. The new formalism retains n-dimensional covariance and is especially suited to 2+2 decompositions of spacetime. It is also possible to use the generalised formalism to obtain boundary contributions to the 3+1 Hamiltonian.Comment: 18 pages, revtex, 3 postscript figures include

    Measurements of Far-UV Emission from Elliptical Galaxies at z=0.375

    Get PDF
    The ``UV upturn'' is a sharp rise in spectra of elliptical galaxies shortward of rest-frame 2500 A. It is a ubiquitous phenomenon in nearby giant elliptical galaxies, and is thought to arise primarily from low-mass evolved stars on the extreme horizontal branch and beyond. Models suggest that the UV upturn is a very strong function of age for these old stellar populations, increasing as the galaxy gets older. In some models the change in UV/optical flux ratio is a factor of 25 over timescales of less than 3 Gyr. To test the predictions for rapid evolution of the UV upturn, we have observed a sample of normal elliptical galaxies in the z=0.375 cluster Abell 370 with the Faint Object Camera aboard the Hubble Space Telescope. A combination of two long-pass filters was used to isolate wavelengths shortward of rest-frame 2700 A, providing a measurement of the UV upturn at a lookback time of approximately 4 Gyr. Surprisingly, the four elliptical galaxies observed show a range of UV upturn strength that is similar to that seen in nearby elliptical galaxies, with an equivalent 1550-V color ranging from 2.9-3.4 mag. Our result is inconsistent with some models for the UV upturn; other models are consistent only for a high redshift of formation (z_f >= 4).Comment: 4 pages, Latex. 1 figure. To appear in ApJL. Uses emulateapj.sty and apjfonts.sty. Revision includes minor ApJ edits & fixes typo

    Mixed valency in cerium oxide crystallographic phases: Determination of valence of the different cerium sites by the bond valence method

    Get PDF
    We have applied the bond valence method to cerium oxides to determine the oxidation states of the Ce ion at the various site symmetries of the crystals. The crystals studied include cerium dioxide and the two sesquioxides along with some selected intermediate phases which are crystallographically well characterized. Our results indicate that cerium dioxide has a mixed-valence ground state with an f-electron population on the Ce site of 0.27 while both the A- and C-sesquioxides have a nearly pure f^1 configuration. The Ce sites in most of the intermediate oxides have non-integral valences. Furthermore, many of these valences are different from the values predicted from a naive consideration of the stoichiometric valence of the compound

    Hypercritical Advection Dominated Accretion Flow

    Full text link
    In this note we study the accretion disc that arises in hypercritical accretion of M˙∌108MEdd\dot M\sim 10^8 M_{\rm Edd} onto a neutron star while it is in common envelope evolution with a massive companion. In order to raise the temperature high enough that the disc might cool by neutrino emission, Chevalier found a small value of the α\alpha-parameter, where the kinematic coefficient of shear viscosity is Îœ=αcsH\nu=\alpha c_s H, with csc_s the velocity of sound and HH the disc height; namely, α∌10−6\alpha\sim 10^{-6} was necessary for gas pressure to dominate. He also considered results with higher values of α\alpha, pointing out that radiation pressure would then predominate. With these larger α\alpha's, the temperatures of the accreting material are much lower, \lsim 0.35 MeV. The result is that neutrino cooling during the flow is negligible, satisfying very well the advection dominating conditions. The low temperature of the accreting material means that it cannot get rid of its energy rapidly by neutrino emission, so it piles up, pushing its way through the accretion disc. An accretion shock is formed, far beyond the neutron star, at a radius \gsim 10^8 cm, much as in the earlier spherically symmetric calculation, but in rotation. Two-dimensional numerical simulation shows that an accretion disc is reformed inside of the accretion shock, allowing matter to accrete onto the neutron star with pressure high enough so that neutrinos can carry off the energy.Comment: 6 pages, ApJ, submitte
    • 

    corecore