13 research outputs found

    Transform of Riccati equation of constant coefficients through fractional procedure

    Get PDF
    We use a particular fractional generalization of the ordinary differential equations that we apply to the Riccati equation of constant coefficients. By this means the latter is transformed into a modified Riccati equation with the free term expressed as a power of the independent variable which is of the same order as the order of the applied fractional derivative. We provide the solutions of the modified equation and employ the results for the case of the cosmological Riccati equation of FRW barotropic cosmologies that has been recently introduced by FaraoniComment: 7 pages, 2 figure

    Fractional Klein-Kramers equation for superdiffusive transport: normal versus anomalous time evolution in a differential L{\'e}vy walk model

    Full text link
    We introduce a fractional Klein-Kramers equation which describes sub-ballistic superdiffusion in phase space in the presence of a space-dependent external force field. This equation defines the differential L{\'e}vy walk model whose solution is shown to be non-negative. In the velocity coordinate, the probability density relaxes in Mittag-Leffler fashion towards the Maxwell distribution whereas in the space coordinate, no stationary solution exists and the temporal evolution of moments exhibits a competition between Brownian and anomalous contributions.Comment: 4 pages, REVTe

    Fractional Generalization of Quantum Markovian Master Equation

    Full text link
    We prove a generalization of the quantum Markovian equation for observables. In this generalized equation, we use superoperators that are fractional powers of completely dissipative superoperators. We prove that the suggested superoperators are infinitesimal generators of completely positive semigroups and describe the properties of this semigroup. We solve the proposed fractional quantum Markovian equation for the harmonic oscillator with linear friction. A fractional power of the Markovian superoperator can be considered a parameter describing a measure of "screening" of the environment of the quantum system: the environmental influence on the system is absent for α=0\alpha=0, the environment completely influences the system for α=1\alpha=1, and we have a powerlike environmental influence for 0<α<10<\alpha<1.Comment: 25 pages, LaTe
    corecore