52 research outputs found

    Disorders of Sex Development and Germ Cell Cancer: genetics and microenvironment

    Get PDF
    The ultimate purpose of sexual reproduction, which depends on specialized male and female anatomy and physiology, is to enable continuation of a species and introduction of genetic diversity. In mammals the developmental path towards a male or a female is in principle determined at the moment of fertilization, when either a Y- or an X-chromosome is inherited from the father. The subsequent chromosomal constitution, either XY (male) or XX (female) (referred to as chromosomal sex), will eventually drive formation of a testis or an ovary (the so called gonadal sex). This in turn will result in the next step in sex determination (the phenotypic sex), ultimately leading to a phenotypical male or female respectively. Because of the relevance of the general principles related to this phenomenon in understanding the various levels in which pathological gonadal processes can occur, the next paragraphs will explain these issues in more d

    Antiandrogens prevent stable DNA-binding of the androgen receptor

    Get PDF
    The androgen receptor (AR) is essential for development of the male gender and in the growth of the majority of prostate cancers. Agonists as well as most antagonists induce translocation of the receptor to the nucleus, whereas only agonists can activate AR function. Antagonists are therefore used in the therapy of metastasized prostate cancer. To obtain insight into the mechanism by which antagonists block AR function in living cells, we studied nuclear mobility and localization of green fluorescent protein (GFP)-tagged AR in the presence of either the agonist R1881 or the antagonists bicalutamide and hydroxyflutamide. As controls we investigated a non-DNA-binding AR mutant (A573D) and two mutants (W741C and T877A) with broadened ligand specificity. We demonstrate that in the presence of R1881, AR localizes in numerous intranuclear foci and, using complementary fluorescence recovery after photobleaching (FRAP) approaches and computer modelling, that a fraction of AR ( approximately 10-15%) is transiently immobilized in a DNA-binding-dependent manner (individual ARs being immobile for approximately 45 seconds). By contrast, antagonist-bound GFP-AR showed no detectable immobile fraction and the mobility was similar to that of the R1881-liganded non-DNA-binding mutant (A573D), indicating that antagonists do not induce the relatively stable DNA-binding-dependent immobilization observed with agonist-bound AR. Moreover, in the presence of bicalutamide and hydroxyflutamide GFP-AR was homogeneously distributed in the nucleus. Binding of bicalutamide and hydroxyflutamide to GFP-AR(W741C) and GFP-AR(T877A), respectively, resulted in similar mobility and heterogeneous nuclear distribution as observed for R1881-liganded GFP-AR. The live cell studies indicate that the investigated antagonists interfere with events early in the transactivation function of the AR

    A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development

    Get PDF
    Disorders of sex development (DSD) are congenital conditions where chromosomal, gonad or genital development is atypical. In a significant proportion of 46,XY DSD cases it is not possible to identify a causative mutation, making genetic counseling difficult and potentially hindering optimal treatment. Here, we describe the analysis of a 46,XY DSD patient that presented at birth with ambiguous genitalia. Histological analysis of the surgically removed gonads showed bilateral undifferentiated gonadal tissue and immature testis, both containing malignant germ cells. We screened genomic DNA from this patient for deletions and duplications using an Illumina whole-genome SNP microarray. This analysis revealed a heterozygous deletion within the WWOX gene on chromosome 16, removing exons 6-8. Analysis of parental DNA showed that the deletion was inherited from the mother. cDNA analysis confirmed that the deletion maintained the reading frame, with exon 5 being spliced directly onto exon 9. This deletion is the first description of a germline rearrangement affecting the coding sequence of WWOX in humans. Previously described Wwox knockout mouse models showed gonadal abnormalities, supporting a role for WWOX in human gonad development

    Amino acids 3-13 and amino acids in and flanking the 23FxxLF27 motif modulate the interaction between the N-terminal and ligand-binding domain of the androgen receptor

    Get PDF
    The N-terminal domain (NTD) and the ligand-binding domain (LBD) of the androgen receptor (AR) exhibit a ligand-dependent interaction (N/C interaction). Amino acids 3-36 in the NTD (AR3-36) play a dominant role in this interaction. Previously, it has been shown that a PhixxPhiPhi motif in AR3-36, 23FxxLF27, is essential for LBD interaction. We demonstrate in the current study that AR3-36 can be subdivided into two functionally distinct fragments: AR3-13 and AR16-36. AR3-13 does not directly interact with the AR LBD, but rather contributes to the transactivation function of the AR.NTD-AR.LBD complex. AR16-36, encompassing the 23FxxLF27 motif, is predicted to fold into a long amphipathic alpha-helix. A second PhixxPhiPhi candidate protein interaction motif within the helical structure, 30VREVI34, shows no affinity to the LBD. Within AR16-36, amino acid residues in and flanking the 23FxxLF27 motif are demonstrated to modulate N/C interaction. Substitution of Q24 and N25 by alanine residues enhances N/C interaction. Substitution of amino acids flanking the 23FxxLF27 motif by alanines are inhibitory to LBD interaction

    Prevalence of c-KIT Mutations in Gonadoblastoma and Dysgerminomas of Patients with Disorders of Sex Development (DSD) and Ovarian Dysgerminomas

    Get PDF
    Activating c-KIT mutations (exons 11 and 17) are found in 10-40% of testicular seminomas, the majority being missense point mutations (codon 816). Malignant ovarian dysgerminomas represent ~3% of all ovarian cancers in Western countries, resembling testicular seminomas, regarding chromosomal aberrations and c-KIT mutations. DSD patients with specific Y-sequences have an increased risk for Type II Germ Cell Tumor/Cancer, with gonadoblastoma as precursor progressing to dysgerminoma. Here we present analysis of c-KIT exon 8, 9, 11, 13 and 17, and PDGFRA exon 12, 14 and 18 by conventional sequencing together with mutational analysis of c-KIT codon 816 by a sensitive and specific LightCycler melting curve analysis, confirmed by sequencing. The results are combined with data on TSPY and OCT3/4 expression in a series of 16 DSD patients presenting with gonadoblastoma and dysgerminoma and 15 patients presenting pure ovarian dysgerminomas without DSD. c-KIT codon 816 mutations were detected in five out of the total of 31 cases (all found in pure ovarian dysgerminomas). A synonymous SNP (rs 5578615) was detected in two patients, one DSD patient (with bilateral disease) and one patient with dysgerminoma. Next to these, three codon N822K mutations were detected in the group of 15 pure ovarian dysgerminomas. In total activating c-KIT mutations were found in 53% of ovarian dysgerminomas without DSD. In the group of 16 DSD cases a N505I and D820E mutation was found in a single tumor of a patient with gonadoblastoma and dysgerminoma. No PDGFRA mutations were found. Positive OCT3/4 staining was present in all gonadoblastomas and dysgerminomas investigated, TSPY expression was only seen in the gonadoblastoma/dysgerminoma lesions of the 16 DSD patients. This data supports the existence of two distinct but parallel pathways in the development of dysgerminoma, in which mutational status of c-KIT might parallel the presence of TSPY

    A 46,XY female DSD patient with bilateral gonadoblastoma, a novel SRY missense mutation combined with a WT1 KTS splice-site mutation

    Get PDF
    Patients with Disorders of Sex Development (DSD), especially those with gonadal dysgenesis and hypovirilization are at risk of developing malignant type II germ cell tumors/cancer (GCC) (seminoma/dysgerminoma and nonseminoma), with either carcinoma in situ (CIS) or gonadoblastoma (GB) as precursor lesion. In 10-15% of 46,XY g

    Functional characterisation of novel NR5A1 variants reveals multiple complex roles in Disorders of Sex Development

    Get PDF
    Variants in the NR5A1 gene encoding SF1 have been described in a diverse spectrum of disorders of sex development (DSD). Recently, we reported the use of a targeted gene panel for DSD where we identified 15 individuals with a variant in NR5A1, nine of which are novel. Here, we examine the functional effect of these changes in relation to the patient phenotype. All novel variants tested had reduced trans-activational activity, while several had altered protein level, localization, or conformation. In addition, we found evidence of new roles for SF1 protein domains including a region within the ligand binding domain that appears to contribute to SF1 regulation of Mu¨llerian development. There was little correlation between the severity of the phenotype and the nature of the NR5A1 variant. We report two familial cases of NR5A1 deficiency with evidence of variable expressivity; we also report on individuals with oligogenic inheritance. Finally, we found that the nature of the NR5A1 variant does not inform patient outcomes (including pubertal androgenization and malignancy risk). This study adds nine novel pathogenic NR5A1 variants to the pool of diagnostic variants. It highlights a greater need for understanding the complexity of SF1 function and the additional factors that contribute

    Under-reported aspects of diagnosis and treatment addressed in the Dutch-Flemish guideline for comprehensive diagnostics in disorders/differences of sex development

    Get PDF
    We present key points from the updated Dutch-Flemish guideline on comprehensive diagnostics in disorders/differences of sex development (DSD) that have not been widely addressed in the current (inter)national literature. These points are of interest to physicians working in DSD (expert) centres and to professionals who come across persons with a DSD but have no (or limited) experience in this area. The Dutch-Flemish guideline is based on internationally accepted principles. Recent initiatives striving for uniform high-quality care across Europe, and beyond, such as the completed COST action 1303 and the European Reference Network for rare endocrine conditions (EndoERN), have generated several excellent papers covering nearly all aspects of DSD. The Dutch-Flemish guideline follows these international consensus papers and covers a number of other topics relevant to daily practice. For instance, although next-generation sequencing (NGS)-based molecular diagnostics are becoming the gold standard for genetic evaluation, it can be difficult to prove variant causality or relate the genotype to the clinical presentation. Network formation and centralisation are essential to promote functional studies that assess the effects of genetic variants and to the correct histological assessment of gonadal material from DSD patients, as well as allowing for maximisation of expertise and possible cost reductions. The Dutch-Flemish guidelines uniquely address three aspects of DSD. First, we propose an algorithm for counselling and diagnostic evaluation when a DSD is suspected prenatally, a clinical situation that is becoming more common. Referral to ultrasound sonographers and obstetricians who are part of a DSD team is increasingly important here. Second, we pay special attention to healthcare professionals not working within a DSD centre as they are often the first to diagnose or suspect a DSD, but are not regularly exposed to DSDs and may have limited experience. Their thoughtful communication to patients, carers and colleagues, and the accessibility of protocols for first-line management and efficient referral are essential. Careful communication in the prenatal to neonatal period and the adolescent to adult transition are equally important and relatively under-reported in the literature. Third, we discuss the timing of (NGS-based) molecular diagnostics in the initial workup of new patients and in people with a diagnosis made solely on clinical grounds or those who had earlier genetic testing that is not compatible with current state-of-the-art diagnostics

    NR5A1 gene variants repress the ovarian-specific WNT signaling pathway in 46,XX disorders of sex development patients

    Get PDF
    Several recent reports have described a missense variant in the gene NR5A1 (c.274C>T; p.Arg92Trp) in a significant number of 46,XX ovotesticular or testicular disorders of sex development (DSDs) cases. The affected residue falls within th
    corecore