
Prevalence of c-KIT Mutations in Gonadoblastoma and
Dysgerminomas of Patients with Disorders of Sex
Development (DSD) and Ovarian Dysgerminomas
Remko Hersmus1, Hans Stoop1, Gert Jan van de Geijn1, Ronak Eini1, Katharina Biermann1, J.

Wolter Oosterhuis1, Catharina DHooge2, Dominik T. Schneider3, Isabelle C. Meijssen4,

Winand N. M. Dinjens4, Hendrikus Jan Dubbink4, Stenvert L. S. Drop5, Leendert H. J. Looijenga1*

1 Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The

Netherlands, 2 Department of Pediatrics, Division of Pediatric Hemato-Oncology, University Hospital Ghent, Ghent, Belgium, 3 Clinic of Pediatrics, Municipal Hospital

Dortmund, Dortmund, Germany, 4 Molecular Diagnostics, Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Josephine Nefkens Institute,

Rotterdam, The Netherlands, 5 Department of Pediatric Endocrinology, Erasmus MC - University Medical Center Rotterdam, Sophia Children’s Hospital, Rotterdam, The

Netherlands

Abstract

Activating c-KIT mutations (exons 11 and 17) are found in 10–40% of testicular seminomas, the majority being missense
point mutations (codon 816). Malignant ovarian dysgerminomas represent ,3% of all ovarian cancers in Western countries,
resembling testicular seminomas, regarding chromosomal aberrations and c-KIT mutations. DSD patients with specific Y-
sequences have an increased risk for Type II Germ Cell Tumor/Cancer, with gonadoblastoma as precursor progressing to
dysgerminoma. Here we present analysis of c-KIT exon 8, 9, 11, 13 and 17, and PDGFRA exon 12, 14 and 18 by conventional
sequencing together with mutational analysis of c-KIT codon 816 by a sensitive and specific LightCycler melting curve
analysis, confirmed by sequencing. The results are combined with data on TSPY and OCT3/4 expression in a series of 16 DSD
patients presenting with gonadoblastoma and dysgerminoma and 15 patients presenting pure ovarian dysgerminomas
without DSD. c-KIT codon 816 mutations were detected in five out of the total of 31 cases (all found in pure ovarian
dysgerminomas). A synonymous SNP (rs 5578615) was detected in two patients, one DSD patient (with bilateral disease)
and one patient with dysgerminoma. Next to these, three codon N822K mutations were detected in the group of 15 pure
ovarian dysgerminomas. In total activating c-KIT mutations were found in 53% of ovarian dysgerminomas without DSD. In
the group of 16 DSD cases a N505I and D820E mutation was found in a single tumor of a patient with gonadoblastoma and
dysgerminoma. No PDGFRA mutations were found. Positive OCT3/4 staining was present in all gonadoblastomas and
dysgerminomas investigated, TSPY expression was only seen in the gonadoblastoma/dysgerminoma lesions of the 16 DSD
patients. This data supports the existence of two distinct but parallel pathways in the development of dysgerminoma, in
which mutational status of c-KIT might parallel the presence of TSPY.
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Introduction

c-KIT belongs to the Type III tyrosine kinase receptor family,

which also includes the platelet-derived growth factor receptor

(PDGFR) and macrophage-colony stimulating receptor (M-

CSFR). The ligand for c-KIT is the stem cell factor (SCF,

KITLG) and the SCF-KIT pathway regulates the differentiation

of melanocytes, red blood cells, mast cells, interstitial cells of Cajal,

and germ cells [1,2,3]. Moreover, this pathway is important in the

survival of primordial germ cells (PGCs) [4,5]. Expression of c-

KIT and gain-of-function mutations in c-KIT has been found in

mastocytosis, leukemia and gastro-intestinal stromal tumors

(GIST) [6,7,8]. In GIST activating mutations in c-KIT exons 8,

9, 11, 13 and 17 are found in 75–80% of cases, mutations in

PDGFRA exons 12, 14 and 18 in 5–8%, and they are mutually

exclusive (for review [9]).

Activating c-KIT mutations have also been found in human

germ cell tumors/cancers (GCC), and 10–40% of testicular

seminomas harbor activating mutations in exons 11 and 17.

About two thirds are missense point mutations at codon 816

[2,10,11,12], which are also found in almost all mast cell tumors

[13]. Noteworthy is that activating c-KIT mutations have been

found in a subset of tumors showing the same histology as

testicular seminoma, namely; mediastinal seminomas, intracranial

germinomas and ovarian dysgerminomas [14,15,16]. Next to

mutations in c-KIT, amplification of chromosome 4q12, harbor-

ing the c-KIT gene, has been described in testicular GCC, likely

related to the progression to seminoma [10]. Malignant ovarian
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dysgerminomas represent approximately 3% of all ovarian cancers

in Western countries, and share a morphological resemblance, and

show a similar pattern of chromosomal aberrations [17] with

testicular GCC. Families with both ovarian and testicular GCC

have been reported, suggestive of a common etiology [18].

Disorders of Sex Development (DSD), previously referred to as

intersex, are a congenital condition in which there is an atypical

development of the chromosomal, gonadal or anatomical sex [19].

DSD patients with gonadal dysgenesis or hypovirilization harbor-

ing Y-chromosomal material in their karyotype have an increased

risk of developing GCC (for review [20,21]). The precursor lesion

in the dysgenetic gonads of these patients is the gonadoblastoma

(GB), or carcinoma in situ (CIS), depending on the level of gonadal

testicularization [22]. The invasive component is the dysgermino-

ma in most cases (genetically the counterpart of the seminoma of

the testis). For the development of GB the presence of the

GonadoBlastoma locus on the Y-chromosome (GBY) is impera-

tive, with the testis specific protein, Y-linked (TSPY) gene being the

most likely candidate in this region. TSPY expression is linked to

the proliferation and survival of germ cells, and expression is

increased in CIS, GB and sometimes seminoma [23]. The

octamer-binding protein 3 (OCT3/4, POU5F1) is specifically

expressed in all GCC with pluripotent potential, as well as in the

neoplastic precursor lesions CIS and GB [24,25]. Germ cells

residing in an unfavorable environment, as is the case in DSD,

might escape cell death by prolonged expression of both OCT3/4

and TSPY. If mutations in c-KIT or PDGFRA play a significant

role in the development of GB and the development of

dysgerminoma in DSD patients is not clear so far because of the

lack of multiple studies.

Here we report the analysis of activating mutations in codon

816 of c-KIT in 31 patients with a GB and/or dysgerminoma by

LightCycler analysis, together with conventional sequence analysis

of c-KIT exons 8, 9, 11, 13 and 17, and PDGFRA exons 12, 14 and

18, mutations in which are frequently found in GIST. These

results are linked with karyotype, histology of the gonads,

expression of TSPY in the tumors and putative role of the

mutations found in the etiology of the disease.

Materials and Methods

Tissue Samples and Immunohistochemistry
In total 31 cases, consisting of eleven cases of GB, fifteen cases of

DG and eight cases of GB with DG were retrieved from the

archives (Table 1). Collected tissue samples were diagnosed

according to WHO standards [26] by an experienced pathologist

(JWO). Use of tissue samples for scientific reasons was approved by

the Medical Ethical Committee ErasmusMC (MEC 02.981 and

CCR2041). Patients gave their verbal consent that left over

material, after a diagnostic procedure, can be used for scientific

purposes. This agreement is not documented, as agreed upon by

the MEC. If patients chose to not consent, it is specifically

indicated in the clinical files, and samples were excluded. This

consent procedure was used according to the ‘‘Code for Proper

Secondary Use of Human Tissue in the Netherlands.’’

Immunohistochemistry was performed on paraffin-embedded

tissue sections of 3-mm thickness. After deparaffinization and

5 min. incubation in 3% H2O2 to inactivate endogenous

peroxidase activity, antigen retrieval was carried out by heating

under pressure of up to 1.2 bar in an appropriate buffer; 0.01 M

sodium citrate (pH 6) or 0.01 M EGTA, 0.01 M TRIS (pH 9).

After blocking endogenous biotin using the avidin/biotin blocking

kit (SP-2001, Vector Laboratories, Burlingame, CA, USA), the

sections were incubated for either 2 hrs at room-temperature

(OCT3/4, c-KIT (CD117) or overnight at 4uC (TSPY). Appro-

priate biotinylated secondary antibodies were used for detection

and were visualized using the avidin-biotin detection and substrate

kits (Vector Laboratories). The antibodies used directed against

OCT3/4, TSPY and c-KIT have been described before

[27,28,29].

DNA Isolation and c-KIT Codon 816 Mutational Screen
DNA was isolated from formalin-fixed-paraffin-embedded

material using a standard protocol, percentage of tumor present

in each sample was over 50% unless indicated otherwise (Table 1).

In brief, 10 slices of 10-mm thickness were cut and incubated three

times with xylene for at least 30 min at RT, after which the pellet

was washed each time with ethanol. Lysisbuffer consisting of

10 mM TRIS, 100 mM NaCl, 5 mM EDTA, 1% SDS and 1 mM

CaCl2 together with 10 mg/ml proteinase-K was added, and the

sample was incubated for 16 hrs at 50uC, while shaking at

1200 rpm. DNA was subsequently extracted by standard phenol/

chloroform extraction and ethanol precipitation. DNA was

dissolved in 10 mM TRIS with 1 mM EDTA. DNA quality and

concentration was checked on the Nanodrop 1000 (Thermo-

Scientific, Wilmington, DE, USA).

50 ng of DNA from each sample was screened for c-KIT

D816V, D816H, D816Y mutations using a melting-curve based

LightCycler assay (Roche Diagnostics, Mannheim, Germany) with

forward primer KIT816For, CAGCCAGAAATATCCTCCT-

TACT; or KIT816 ForA, CTTTTCTCCTCCAACCTAATAG;

reverse primer KIT816Rev, TTGCAGGACTGTCAAGCA-

GAG; and hybridization probes c-KIT-anchor, LC640-ATG-

TGGTTAAAGGAAACGTGAGTACCCA–PH; c-KIT-sensor

VAL, AGCCAGAGTCATCAAGAATGATTCTA–FL; c-KIT-

sensor TYR, AGCCAGACACATCAAGAATGATTCTA–FL; c-

KIT-sensor HIS, AGCCAGATACATCAAGAATGATTCTA.

To suppress wild type sequences, all reactions were performed

with and without addition of a locked nucleic acid (LNA), c-KIT

probe GCCAGAGACATCAAGAATG (all primers produced by

TIB molbiol, Berlin, Germany). Mixing experiments showed that

with the addition of LNA to block wild type sequence, the lower

limit of detection was 20 fg of mutant DNA in 50 ng of wild type

DNA, and routinely 20 pg of mutant DNA could be detected (data

not shown). As a control, samples containing the c.816 mutation

under investigation were included in each experiment and were

analyzed with and without LNA, together with the experimental

samples. The PCR reaction was carried out in a 20 mL volume

with 0.5 mM each of forward, reverse, anchor and appropriate

sensor probe, 0.01 mM of LNA, 3 mM MgCl2 and 2 mL Light-

Cycler Fast-Start DNA Master HybProbe mix. Reactions were

run on a LightCycler Instrument (Roche Diagnostics, Almere, The

Netherlands). Amplification was performed with 45 cycles using

60uC annealing temperature. Final melting curve analysis was

started at 40uC up to 95uC with a slope of 0.2uC /second and

continuous detection with channel F2/F1. Lightcycler data was

analyzed using the LightCycler 3.0 software (Roche Diagnostics).

Samples showing an aberrant melting curve were run at least in

duplicate.

Sequence Analysis
All cases found to be positive in the c-KIT c.816 screen were

confirmed by sequence analysis. Approximately 100 ng of PCR

product was treated with ExoSAP-IT (GE Healthcare Life

Sciences, Piscataway, NJ, USA) following manufacturers instruc-

tions, and directly sequenced with 3.3 pmol of each forward and

reverse primer using the Big Dye terminator Cycle Sequencing Kit

(Applera, Darmstadt, Germany). After initial denaturation at 95uC
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for 5 min, 25 cycles at 94uC for 15 seconds and 60uC for

4 minutes were performed. Sequence analysis was performed on

an ABI 3100 Genetic Analyzer (Applied Biosystems, Foster City,

CA, USA).

In addition to screening for activating mutations of c.816, in all

samples c-KIT exon 8, 9, 11, 13, en 17 and PDGFRA exon 12, 14

and 18 were analyzed by conventional bidirectional cycle

sequencing of PCR-amplified fragments. Amplification of 50 ng

genomic DNA of each sample was performed with M13-tailed

primers (Table S1). After initial denaturation at 95uC for 3 min,

35 cycles of 95uC for 30 seconds, 60uC for 45 seconds, and 72uC
for 45 seconds were performed, followed by 10 min at 72uC.

Subsequent sequence analyses of the PCR products was carried

out with M13 forward and reverse primers, essentially as described

above.

Results

The mean age of diagnosis of the GB and/or DG was 15 years

(range, 3 months-36 years, see Table 1). The mean age of

diagnosis between the group of patients with DSD (cases 1–16),

being 16 (3 months-36 years) and the group with ovarian

dysgerminoma (cases 17–31), being 14 (6–19 years) did not differ

significantly. Within the group of DSD patients the mean age of

diagnosis did differ between patients showing GB, being 13 and

patients who had a dysgerminoma with GB, being 21 years. In

total, twenty-two cases showed a dysgerminoma component;

thirteen patients had pure dysgerminoma, three patients had non-

dysgerminoma components (yolk sac tumor and (immature)

teratoma) next to the dysgerminoma component, and six patients

showed GB next to dysgerminoma. One patient showed teratoma

and yolk sac tumor next to GB. Eight patients did not have an

invasive component; seven showed GB (one bilaterally) and one

patient had GB next to CIS and intratubular seminoma. Five cases

presented with bilateral disease; one case showing GB in both

gonads, one patient having GB in one gonad and GB together

with dysgerminoma in the other, one case with GB in one gonad

and GB next to dysgerminoma, yolk sac tumor and immature

teratoma in the other, and from two cases only material from one

of the gonads was available, showing GB, CIS, and dysgerminoma

in one patient and GB, teratoma and yolk sac tumor in the other

patient (cases 1–5, Table 1).

LightCycler analysis detected variants in exon 17 of c-KIT in

five out of the total group of 31 patients (19%). Four were found in

the group of ovarian dysgerminomas (27%: four out of fifteen

cases), consisting of two D816V, one D816H and one D816Y

mutation (cases 17, 19, 22 and 25, Table 1). All mutations at

codon 816 were detected in the LightCycler assay, in analyses with

and without LNA added, showing a shift in melting curves which

were compared with control samples (Figure S1). One variant in c-

KIT exon 17 was found in the group of DSD patients, which

changed the codon 178 sequence from ATC to ATT (I798I),

which encodes a known synonymous SNP (rs. 55789615) (case 4,

Table 1). This variation shifted the melting curve to a position

different from that of any of the control mutation samples included

(data not shown). Two other samples produced an aberrant

melting curve (case 1 and 2, Table 1), but no mutation was

detected in subsequent sequencing, despite analyzing the samples

in triplicate for all three c.816 variants on two independent DNA

isolations (data not shown). All mutations found were verified by

sequencing the LightCycler products from reactions with and

without LNA (Figure S1). All other samples tested showed melting

curves identical to non-mutated Asp 816 (data not shown).T
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Next to the c.816 LightCycler analysis, conventional Sanger

sequencing of c-KIT exons 8, 9, 11, 13, and 17 was performed on

the DNA samples in a diagnostic setting. This confirmed the

presence of the four c.816 mutations found by the LightCycler

analysis (cases 17, 19, 22 and 25, Table 1), but also revealed an

additional D816V mutation (case 31, Table 1). Furthermore, in

three ovarian dysgerminoma cases a N822K mutation was found

(cases 21, 24 and 27 Table 1). In total, in eight out of fifteen

ovarian dysgerminoma cases (53%) an exon 17 mutation was

found. One patient (case 28, Table 1), showed a heterozygous

synonymous SNP (rs. 55789615). In case 16 a D820E mutation in

exon 17, next to a N505I mutation in exon 9 was found, being the

only DSD case showing mutations in c-KIT (6%, 1 out of 16). No

mutations in any of the other exons analyzed were found.

Sequence analysis of PDGFRA exon 12, 14 and 18 did not reveal

any mutations, only a homozygous synonymous SNP in exon 12

(rs. 1873778) was detected in all samples analyzed.

Immunohistochemical analysis of c-KIT showed no correlation

between the presence of c-KIT activating mutations and protein

expression in the tumor. In four cases c-KIT immunohistochem-

istry was not investigated (case 23, 25, 29 and 31), as no additional

material was available (Table 1). Staining for c-KIT was variable

in the whole series analyzed, ranging from absent through

intermediate to strong staining and no clear difference between

the DSD and ovarian dysgerminoma subgroups could be seen. As

expected, staining for OCT3/4 was positive in the GB, and

dysgerminoma components in all cases analyzed, with the

exception of case 7. TSPY staining correlated with the two

subgroups of patients analyzed, being positive in the DSD group

(cases 1–16), with the exception of cases 7 and 13, which showed

no staining, and negative in the ovarian dysgerminomas (cases 17–

31) (p-value 3.661028).

Discussion

c-KIT expression has been demonstrated in a wide variety of

human tumors, although in most types expression is variable. The

highest percentages are seen in gastro-intestinal tumors, seminomas,

adenoid-cystic carcinomas and malignant melanomas, and amplifi-

cation and enhanced expression is associated with seminoma

progression [10,30]. The presence of activating mutations of c-KIT

in testicular seminomas is well known. Although ovarian dysgermi-

nomas resemble seminomas in morphology and chromosomal

aberrations [31], expression of c-KIT is not extensively explored.

Here we analyzed fifteen cases of pure ovarian dysgerminomas and

found that c-KIT is expressed, although variable, in all but two of the

cases analyzed. Mutations in c-KIT codon 816 were found in 5 (33%)

and mutations in codon 822 in 3 (20%) out of the 15 pure ovarian

dysgerminoma cases (case 17, 19, 22, 25, 31 and 21, 24, 27

respectively, Table 1), accounting for 53% of cases analyzed. No

mutations were detected in c-KIT exon 8, 9, 11, and 13. Although

most ovarian dysgerminomas express c-KIT, we could not find a

correlation between expression and c-KIT exon 17 mutations. It is

known that in GIST in addition to mutations in c-KIT, also mutations

in PDGFRA exon 12, 14 and 18 play a role and that these are mutually

exclusive [9]. Sequencing PDGFRA did not reveal mutations in any of

the dysgerminoma DNA samples analyzed, only a variation in exon

12 was found in almost all cases (homozygous synonymous SNP, rs.

1873778, Table 1). This indicates that mutations in PDGFRA do not

play a major role in the development of (ovarian) dysgerminomas or

GB. The results shown here extend those of Cheng et al. and Hoei-

Hansen et al. [16,32]. Cheng et al. [32] analyzed 22 cases of

dysgerminoma and found a c-KIT codon 816 mutation in 27% of

cases, and KIT expression in 87%. Hoei-Hansen et al. found c-KIT

codon 816 mutations in five out of seventeen dysgerminoma cases

(29%) with 80% expressing c-KIT [16]. Furthermore, also in gastro-

intestinal tumors KIT mutation rate is lower than the expression rate

ofKIT[33,34].Theresultspresentedheresuggest that inabouthalfof

ovarian dysgerminomas activating mutations in c-KIT play a role,

with about a third consisting of codon 816 mutations, as has been

reported by others [16,32], while the remaining 20% consisted of

N822K mutations. Indeed, c-KIT N822K mutations have also been

foundintesticularGCC[10,35,36], indicatingarole for thismutation

in the development of GCC, independent of the origin in the testis or

ovary. Next to these mutations a known synonymous SNP

(rs55789615) was detected in exon 17 of case 28, which has been

describedbefore inapatienthavingaN822Kmutation in theGCCof

the contralateral testis [36]. Besides these, no other aberrations in the

exons analyzed could be found in the group of ovarian dysgermino-

mas. Patients showing expression of c-KIT might benefit from

targeted therapy with imatinib mesylate, as has been shown for

patients with GIST [37], and also in a patient with metastatic

seminoma [38]. This might therefore also be of interest to treat

ovarian dysgerminoma.

DSD patients with gonadal dysgenesis or hypovirilization have

an increased risk of developing GCC, with GB as the precursor

lesion, linked to the presence of (part of) the Y-chromosome. Y-

chromosomal material is detected in 90% of patients with

dysgenetic gonads, with the TSPY gene being seen as the

candidate gene in the GonadoBlastoma on the Y-chromosome

(GBY) region [39]. Interestingly, the role of TSPY has been

suggested to be a repressor of androgen signaling by trapping AR

in the cytoplasm, even in presence of the ligand [40]. It is therefore

possible that the relative high levels of TSPY protein found in CIS

and GB creates a local androgen –insensitivity environment, in

which these cells are not able to respond to the presence of ligand.

This is of particular interest during the window of so-called mini-

puberty, whereby the affected germ cells remain in an embryonic

state (positive for OCT3/4 amongst others). During puberty these

cells might become sensitive to prolonged and increased levels of

androgens and subsequently become invasive (associated by loss of

TSPY expression). Here we show that in 89% of cases (17 out of

19 analyzed) where GB was present, either with or without

dysgerminoma, positive staining of the TSPY protein could be

seen in the neoplastic cells. It is possible that in the two TSPY

negative cases (7 and 13) the staining was sub-optimal due to poor

tissue fixation, as other markers tested showed unexpected

(negative) results (data not shown). In contrast, all cases with

ovarian dysgerminoma in a 46,XX (normal female) genetic

background were negative for TSPY. The results underline the

importance of presence of (part of) the Y-chromosome in the

development of GB and point to the fact that in the case of DSD

and ovarian dysgerminomas the pathways leading to the tumors

are distinct. This is in line with, and extends the results reported by

Hoei-Hansen [16], who showed TSPY in five out of seven cases

with GB, the precursor lesion of dysgerminoma in DSD patients,

and no TSPY protein expression in eleven pure dysgerminoma

cases. Presence of the TSPY gene in malignant ovarian germ cell

tumors has also been studied by Shahsiah et al. [41], showing

positivity of the gene in 6 out of 47 (12.7%) cases, two patients

showed GB and in one patient presence of the Y chromosome was

confirmed cytogenetically. However, no c-KIT mutation analysis

was performed.

Next to the presence of TSPY, also presence of OCT3/4 was

investigated in this series. OCT3/4 is one of the key regulators of

self renewal and pluripotency of embryonic stem cells, and in

normal development this protein is only present in primordial

germ cells/gonocytes and oogonia [28,42]. In the testis expression

c-Kit Mutations in GCC with and without DSD
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is only seen in GCC (i.e. seminoma and embryonal carcinoma)

and its precursor lesion CIS [25,43]. In DSD patients OCT3/4

expression is present in GB and dysgerminoma [44,45]. OCT3/4

was present in all but one GB analyzed in this study, and also a

positive staining was found in all dysgerminomas, in line with

previous studies [16,44]. Case 7 which did not show a positive

OCT3/4 staining of the GB, also gave mixed results using other

markers (negative TSPY staining amongst others), indicating

possible poor quality of the material.

Analyzing the presence of c-KIT activating - and PDGFRA

mutations, either by LightCycler melting curve analysis or

conventional sequencing, in the group of sixteen DSD cases

showing GB, with or without an invasive tumor, showed that in

the majority of cases no mutations could be detected (15 out of 16

cases, 94%). It must be mentioned however, that in a number of

cases the percentage of tumor present in the sample was low,

possibly leading to false negative results. In three patients a shift in

melting curve not corresponding to one of the c-KIT c.816

mutations investigated was found, and subsequent sequencing of

the LightCycler products revealed a wild type exon 17 sequence in

case 1 and 2, and a known synonymous SNP (rs 55789615) in case

4 (I798I), although this latter finding was not confirmed by

conventional sequencing of the original DNA sample. Strikingly,

these three patients all have bilateral disease. The I798I variant

was also detected in a patient with ovarian dysgerminoma (case 28,

see above). In one patient (case 16) showing GB and mainly

dysgerminoma, missense mutations in c-KIT were found in exon 9

and 17, resulting in N505I and D820E respectively, which were

not present in normal adjacent adnexal material. In this case,

which was also positive for TSPY, presence of the Y-chromosome

was confirmed with fluorescent in-situ hybridization on paraffin

embedded material of the dysgerminoma lesion using a Y-

centromeric probe (data not shown), confirming a 46,XY-DSD

diagnosis. A mutation in c-KIT codon 816 in a DSD patient

presenting with GB and dysgerminoma has also been reported

previously [16], indicating that in rare cases these mutations can

be found in DSD patients. Interestingly, the phenotypically male

patient described here presented with a unilateral cryptorchid

testis, which was removed during orchidopexy. He has two sons,

who both presented with bilateral cryptorchid testis, which is one

of the major risk factors for testicular GCC [46]. If the mutations

found are also present in the sons cannot be ascertained as no

material is available for analysis. To our knowledge this is the first

time a N505I mutation in exon 9 of c-KIT has been found. c-KIT

mutations in exon 9 have been described in GIST [47], and it is

thought that these mutations mimic the conformational change

that the extracellular KIT receptor undergoes when SCF is bound

[48]. The activating c-KIT D820E mutation has been described

together with mutations in exon 9, related to sunitinib resistance in

GIST [49]. If the mutations found are located on the same or

different alleles cannot be determined, as only paraffin embedded

material was available for analysis. Besides the specific c-KIT c.816

mutations investigated here, other mutations in exon 17 have been

reported in GCC; c-KIT gain-of-function D820G and Y823D

[2,10,35,36] have been found, next to S821F, C809S, Y823N and

D816E together with D820H [12,36] amongst others, which are

not present in the cases analyzed here, and thus do not seem to be

involved in ovarian dysgerminomas or DSD. Interestingly,

recently genome-wide association studies of have identified SNPs

within KITLG (SCF) as having the strongest association with an

increased risk of developing a testicular GCC, pointing to the

importance of the SCF-cKIT pathway in this disease [50,51,52].

Taken together, c-KIT mutations occur in approximately half of

pure ovarian dysgerminoma cases, all residing in exon 17,

indicating a role in the etiology of the disease. The activated c-

KIT, together with prolonged expression of OCT3/4 may allow

increased survival and proliferation of undifferentiated gonocytes/

oogonia, leading to the development of dysgerminoma. In DSD,

presence of Y-chromosomal material leads to the gonadal

dysgenesis, in which the germ cells survive because of prolonged

expression of both OCT3/4 and TSPY, setting the stage for GB

and subsequent dysgerminoma development; although in a

minority of cases mutations in c-KIT might play a role.

Supporting Information

Figure S1 Detection of c-KIT c.816 mutations in patient
samples by melting curve analysis. The y-axis represents

fluorescence intensity and the x-axis represents temperature.

Mutations lead to different melting temperatures of the hybrid-

ization probes from the amplification product. A, B) Melting

curves of sample 19 and 22 with and without the addition of LNA

are shown together with a positive control harboring the D816V

mutation. C) Melting curves of sample 17 with and without the

addition of LNA are shown together with a positive control

harboring the D816H mutation. D) Melting curves of sample 25

with and without the addition of LNA are shown together with a

positive control harboring the D816Y mutation. E, F) Electro-

pherogram showing the A to T mutation in codon 816 in

LightCycler products with and without LNA added of sample 19

and 22 respectively. G) Electropherogram showing the G to C

mutation in LightCycler products with and without LNA added of

codon 816 in sample 17. H) Electropherogram showing the G to T

mutation in LightCycler products with and without LNA added of

codon 816 in sample 25. Note the suppression of wild type c-KIT

and the enrichment of the mutant amplification product in the +
LNA samples. pc: positive control, Val: valine mutation, His:

histidine mutation, Tyr: tyrosine mutation, LNA: locked nucleic

acid.

(TIF)

Table S1 c-KIT and PDGFRA primers.

(XLS)
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