2,384 research outputs found
Staggered Superconductivity in UPt: A New Phenomenological Approach
We present a new Ginzburg-Landau theory for superconductivity in UPt,
based upon a multicomponent order parameter transforming under an irreducible
space group representation; the phase is staggered in real space. Our model can
explain the phase diagram including the tetracritical point for all
field directions. We motivate this unconventional superconducting state in
terms of odd-in-time-reversal pairing that may arise in one- or two-channel
Kondo models, and suggest experimental tests.Comment: 12 pages, 3 postscript figures are appended as a uuencoded file,
RevTeX 3.
Lattice dynamics and electron-phonon interaction in (3,3) carbon nanotubes
We present a detailed study of the lattice dynamics and electron-phonon
coupling for a (3,3) carbon nanotube which belongs to the class of small
diameter based nanotubes which have recently been claimed to be
superconducting. We treat the electronic and phononic degrees of freedom
completely by modern ab-initio methods without involving approximations beyond
the local density approximation. Using density functional perturbation theory
we find a mean-field Peierls transition temperature of approx 40K which is an
order of magnitude larger than the calculated superconducting transition
temperature. Thus in (3,3) tubes the Peierls transition might compete with
superconductivity. The Peierls instability is related to the special 2k_F
nesting feature of the Fermi surface. Due to the special topology of the (n,n)
tubes also a q=0 coupling between the two bands crossing the Fermi energy at
k_F is possible which leads to a phonon softening at the Gamma point.Comment: 4 pages, 3 figures; to be published in Phys. Rev. Let
Electron-phonon coupling and superconductivity-induced distortion of the phonon lineshape in VSi
Phonon measurements in the A15-type superconductors were complicated in the
past because of the unavailability of large single crystals for inelastic
neutron scattering, e.g., in the case of NbSn, or unfavorable neutron
scattering properties in the case of VSi. Hence, only few studies of the
lattice dynamical properties with momentum resolved methods were published, in
particular below the superconducting transition temperature . Here, we
overcome these problems by employing inelastic x-ray scattering and report a
combined experimental and theoretical investigation of lattice dynamics in
VSi with the focus on the temperature-dependent properties of low-energy
acoustic phonon modes in several high-symmetry directions. We paid particular
attention to the evolution of the soft phonon mode of the structural phase
transition observed in our sample at , i.e., just above the
measured superconducting phase transition at . Theoretically,
we predict lattice dynamics including electron-phonon coupling based on
density-functional-perturbation theory and discuss the relevance of the soft
phonon mode with regard to the value of . Furthermore, we explain
superconductivityinduced anomalies in the lineshape of several acoustic phonon
modes using a model proposed by Allen et al., [Phys. Rev. B 56, 5552 (1997)]
Phonon dispersion and electron-phonon coupling in MgB_2 and AlB_2
We present a first principles investigation of the lattice dynamics and
electron-phonon coupling of the superconductor MgB_2 and the isostructural
AlB_2 within the framework of density functional perturbation theory using a
mixed-basis pseudopotential method. Complete phonon dispersion curves and
Eliashberg functions \alpha^2F are calculated for both systems. We also report
on Raman measurements, which support the theoretical findings. The calculated
generalized density-of-states for MgB_2 is in excellent agreement with recent
neutron-scattering experiments. The main differences in the calculated phonon
spectra and \alpha^2F are related to high frequency in-plane boron vibrations.
As compared to AlB_2, they are strongly softened in MgB_2 and exhibit an
exceptionally strong coupling to electronic states at the Fermi energy. The
total coupling constants are \lambda_{MgB_2}=0.73 and \lambda_{AlB_2}=0.43.
Implications for the superconducting transition temperature are briefly
discussed.Comment: 10 pages, 4 figures, to appear in Phys. Rev. Let
Staggered Pairing Phenomenology for UPd_2Al_3 and UNi_2Al_3
We apply the staggered-pairing Ginzburg-Landau phenomenology to describe
superconductivity in UPd_2Al_3 and UNi_2Al_3. The phenomenology was applied
successfully to UPt_3 so it explains why these materials have qualitatively
different superconducting phase diagrams although they have the same
point-group symmetry. UPd_2Al_3 and UNi_2Al_3 have a two-component
superconducting order parameter transforming as an H-point irreducible
representation of the space group. Staggered superconductivity can induce
charge-density waves characterized by new Bragg peaks suggesting experimental
tests of the phenomenology.Comment: 4 pages, REVTeX, 2 Postscript figure
Pressure effects on crystal and electronic structure of bismuth tellurohalides
We study the possibility of pressure-induced transitions from a normal
semiconductor to a topological insulator (TI) in bismuth tellurohalides using
density functional theory and tight-binding method. In BiTeI this transition is
realized through the formation of an intermediate phase, a Weyl semimetal, that
leads to modification of surface state dispersions. In the topologically
trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The
Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the
Weyl semimetal--TI transition occurs, the surface electronic structure is
characterized by gapless states with linear dispersion. The peculiarities of
the surface states modification under pressure depend on the band-bending
effect. We have also calculated the frequencies of Raman active modes for BiTeI
in the proposed high-pressure crystal phases in order to compare them with
available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological
phase transition does not occur. In BiTeBr, the crystal structure changes with
pressure but the phase remains a trivial one. However, the transition appears
to be possible if the low-pressure crystal structure is retained. In BiTeCl
under pressure, the topological phase does not appear up to 18 GPa due to a
relatively large band gap width in this compound
- …
