7,130 research outputs found

    Development of sputtered techniques for thrust chambers

    Get PDF
    Procedures for closing out coolant passages in regeneratively cooled thrust chambers by triode sputtering, using post and hollow Cu-0.15 percent Zr cathodes are described. The effects of aluminum composite filler materials, substrate preparation, sputter cleaning, substrate bias current density and system geometry on closeout layer bond strength and structure are evaluated. High strength closeout layers were sputtered over aluminum fillers. The tensile strength and microstructure of continuously sputtered Cu-0.15 percent Zr deposits were determined. These continuous sputtered deposits were as thick as 0.75 cm. Tensile strengths were consistently twice as great as the strength of the material in wrought form

    The Gaussian formula and spherical aberration of the static and moving curved mirrors from Fermat's principle

    Full text link
    The Gaussian formula and spherical aberrations of the static and relativistic curved mirrors are analyzed using the optical path length (OPL) and Fermat's principle. The geometrical figures generated by the rotation of conic sections about their symmetry axes are considered for the shapes of the mirrors. By comparing the results in static and relativistic cases, it is shown that the focal lengths and the spherical aberration relations of the relativistic mirrors obey the Lorentz contraction. Further analysis of the spherical aberrations for both static and relativistic cases have resulted in the information about the limits for the paraxial approximation, as well as for the minimum speed of the systems to reduce the spherical aberrations.Comment: 15 pages, 7 figures, uses iopart. Major revisions on the physical interpretations of the results. Accepted for publication in J. Op

    Si3N4 emissivity and the unidentified infrared bands

    Get PDF
    Infrared spectroscopy of warm (about 150 to 750 K), dusty astronomical sources has revealed a structured emission spectrum which can be diagnostic of the composition, temperature, and in some cases, even size and shape of the grains giving rise to the observed emission. The identifications of silicate emission in oxygen rich objects and SiC in carbon rich object are two examples of this type of analysis. Cometary spectra at moderate resolution have similarly revealed silicate emission, tying together interstellar and interplanetary dust. However, Goebel has pointed out that some astronomical sources appear to contain a different type of dust which results in a qualitatively different spectral shape in the 8 to 13 micron region. The spectra shown make it appear unlikely that silicon nitride can be identified as the source of the 8 to 13 micron emission in either NGC 6572 or Nova Aql 1982. The similarity between the general wavelength and shape of the 10 micron emission from some silicates and that from the two forms of silicon nitride reported could allow a mix of cosmic grains which include some silicon nitride if only the 8 to 13 micron data are considered

    Airglow observations of dynamical (wind shear-induced) instabilities over Adelaide, Australia, associated with atmospheric gravity waves

    Get PDF
    While several observations have been made in recent years of instability features in airglow images of atmospheric gravity waves (AGWs), such measurements are still rare. To date, these features are characterized by appearing to be aligned perpendicular to the AGW wave fronts. Multi-instrument observations confirm the theoretical prediction that such features are caused by convective instabilities where the AGW-induced temperature variation causes the total lapse rate to exceed the adiabatic lapse rate. In February 2000, airglow observations were obtained at Buckland Park, Australia, which showed instability features with a different characteristic. These images showed small-scale (less than 10 km horizontal wavelength) features aligned parallel to the larger scale AGW wave fronts. These features were only seen in OH images, not in O2A images, indicating that they originate below 90 km altitude. Simultaneous MF radar wind data reveal the presence of a mean wind shear which, during the period of the small-scale features, was aligned nearly in the direction of AGW propagation. In addition, the larger scale AGW approached a critical level near 90 km altitude. While the wind shear itself is not large enough to cause an instability, an analysis of the data suggests that the small-scale features are the result of a dynamic (wind shear-induced) instability in the 87–90 km altitude region. The instability was due to a combination of the background wind shear and the large shear induced by the passage of the larger scale AGW as it approached the critical level.J. H. Hecht, R. L. Walterscheid and R. A. Vincen

    SU(3) quasidynamical symmetry underlying the Alhassid--Whelan arc of regularity

    Full text link
    The first example of an empirically manifested quasi dynamical symmetry trajectory in the interior of the symmetry triangle of the Interacting Boson Approximation model is identified for large boson numbers. Along this curve, extending from SU(3) to near the critical line of the first order phase transition, spectra exhibit nearly the same degeneracies that characterize the low energy levels of SU(3). This trajectory also lies close to the Alhassid-Whelan arc of regularity, the unique interior region of regular behavior connecting the SU(3) and U(5) vertices, thus offering a possible symmetry-based interpretation of that narrow zone of regularity amidst regions of more chaotic spectra.Comment: 4 pages, LaTeX, 5 eps figure

    A Stability Diagram for Dense Suspensions of Model Colloidal Al2O3-Particles in Shear Flow

    Get PDF
    In Al2O3 suspensions, depending on the experimental conditions very different microstructures can be found, comprising fluid like suspensions, a repulsive structure, and a clustered microstructure. For technical processing in ceramics, the knowledge of the microstructure is of importance, since it essentially determines the stability of a workpiece to be produced. To enlighten this topic, we investigate these suspensions under shear by means of simulations. We observe cluster formation on two different length scales: the distance of nearest neighbors and on the length scale of the system size. We find that the clustering behavior does not depend on the length scale of observation. If inter-particle interactions are not attractive the particles form layers in the shear flow. The results are summarized in a stability diagram.Comment: 15 pages, 10 figures, revised versio

    Working with simple machines

    Get PDF
    A set of examples is provided that illustrate the use of work as applied to simple machines. The ramp, pulley, lever and hydraulic press are common experiences in the life of a student and their theoretical analysis therefore makes the abstract concept of work more real. The mechanical advantage of each of these systems is also discussed so that students can evaluate their usefulness as machines.Comment: 9 pages, 4 figure

    Influence of contacts on the microwave response of a two-dimensional electron stripe

    Full text link
    Electromagnetic response of a finite-width two-dimensional electron stripe with attached metallic side contacts is theoretically studied. It is shown that contacts substantially influence the position, the linewidth, and the amplitude of plasmon-polariton resonances in the stripe. In finite magnetic fields, absorption of the wave with the inactive circular polarization (which is not absorbed in an infinite system without contacts) may become larger than that of the wave with the active polarization. The results are discussed in view of recent microwave experiments in two-dimensional electron systems.Comment: 13 pages, incl. 9 figures, the paper has been substantially modified and extended, new results have been added. Accepted for publication in Phys. Rev.
    • …
    corecore