97 research outputs found

    A Role in Immunity for Arabidopsis Cysteine Protease RD21, the Ortholog of the Tomato Immune Protease C14

    Get PDF
    Secreted papain-like Cys proteases are important players in plant immunity. We previously reported that the C14 protease of tomato is targeted by cystatin-like EPIC proteins that are secreted by the oomycete pathogen Phytophthora infestans (Pinf) during infection. C14 has been under diversifying selection in wild potato species coevolving with Pinf and reduced C14 levels result in enhanced susceptibility for Pinf. Here, we investigated the role C14-EPIC-like interactions in the natural pathosystem of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa). In contrast to the Pinf-solanaceae pathosystem, the C14 orthologous protease of Arabidopsis, RD21, does not evolve under diversifying selection in Arabidopsis, and rd21 null mutants do not show phenotypes upon compatible and incompatible Hpa interactions, despite the evident lack of a major leaf protease. Hpa isolates express highly conserved EPIC-like proteins during infections, but it is unknown if these HpaEPICs can inhibit RD21 and one of these HpaEPICs even lacks the canonical cystatin motifs. The rd21 mutants are unaffected in compatible and incompatible interactions with Pseudomonas syringae pv. tomato, but are significantly more susceptible for the necrotrophic fungal pathogen Botrytis cinerea, demonstrating that RD21 provides immunity to a necrotrophic pathogen

    The expression of nuclear genes encoding plastid ribosomal proteins precedes the expression of chloroplast genes during early phases of chloroplast development.

    No full text
    The development of different plant organs (root, hypocotyl, and cotyledons) during seed germination is connected with the transformation of proplastids, which are found in embryonic and meristematic tissues, into amyloplasts in root tissues and into chloroplasts in cotyledons. We have analyzed the expression of nuclear and plastid genes coding for the plastid translational apparatus during the first 7 d of Spinacia oleracea development. Results show that the nuclear genes (rps1, rps22, rpI21, and rpI40) are expressed from the 1st d of seed imbibition and precede transcription of the chloroplast-encoded genes (photosynthetic and nonphotosynthetic), which starts the 3rd d after the beginning of imbibition. Transcription from the leaf-/cotyledon-specific P1 promoter of the rpI21 gene starts on the first imbibition day. Inhibition of chloroplast biogenesis by bleaching in the presence of norflurazon has no influence on the expression from this P1 promoter, suggesting that the onset of transcription of nuclear gene rpI21 is independent of a plastid signal

    Synthesis, anti-inflammatory activity, and in vitro antitumor effect of a novel class of cyclooxygenase inhibitors: 4-(aryloyl)phenyl methyl sulfones

    No full text
    Following our previous research on anti-inflammatory drugs (NSAIDs), we report on the design and synthesis of 4-(aryloyl)phenyl methyl sulfones. These substances were characterized for their capacity to inhibit cyclooxygenase (COX-1 and COX-2) isoenzymes. Molecular modeling studies showed that the methylsulfone group of these compounds was inserted deep in the pocket of the human COX-2 binding site, in an orientation that precludes hydrogen bonding with Arg120, Ser353, and Tyr355 through their oxygen atoms. The N-arylindole 33 was the most potent inhibitor of COX-2 and also the most selective (COX-1/COX-2 IC50 ratio was 262). The indole derivative 33 was further tested in vivo for its anti-inflammatory activity in rats. This compound showed greater inhibitory activity than ibuprofen. Other compounds (20, 26, 9, and 30) showed strong activity against carrageenan-induced inflammation. The later compounds showed a weak capacity to inhibit the proliferation of human cell lines K562, NCI-H460, and HT-29 in vitro

    Molecular evolution of peste des petits ruminants virus

    No full text
    Despite safe and efficacious vaccines against peste des petits ruminants virus (PPRV), this virus has emerged as the cause of a highly contagious disease with serious economic consequences for small ruminant agriculture across Asia, the Middle East, and Africa. We used complete and partial genome sequences of all 4 lineages of the virus to investigate evolutionary and epidemiologic dynamics of PPRV. A Bayesian phylogenetic analysis of all PPRV lineages mapped the time to most recent common ancestor and initial divergence of PPRV to a lineage III isolate at the beginning of 20th century. A phylogeographic approach estimated the probability for root location of an ancestral PPRV and individual lineages as being Nigeria for PPRV, Senegal for lineage I, Nigeria/Ghana for lineage II, Sudan for lineage III, and India for lineage IV. Substitution rates are critical parameters for understanding virus evolution because restrictions in genetic variation can lead to lower adaptability and pathogenicity
    • …
    corecore