726 research outputs found

    Deep Projective 3D Semantic Segmentation

    Full text link
    Semantic segmentation of 3D point clouds is a challenging problem with numerous real-world applications. While deep learning has revolutionized the field of image semantic segmentation, its impact on point cloud data has been limited so far. Recent attempts, based on 3D deep learning approaches (3D-CNNs), have achieved below-expected results. Such methods require voxelizations of the underlying point cloud data, leading to decreased spatial resolution and increased memory consumption. Additionally, 3D-CNNs greatly suffer from the limited availability of annotated datasets. In this paper, we propose an alternative framework that avoids the limitations of 3D-CNNs. Instead of directly solving the problem in 3D, we first project the point cloud onto a set of synthetic 2D-images. These images are then used as input to a 2D-CNN, designed for semantic segmentation. Finally, the obtained prediction scores are re-projected to the point cloud to obtain the segmentation results. We further investigate the impact of multiple modalities, such as color, depth and surface normals, in a multi-stream network architecture. Experiments are performed on the recent Semantic3D dataset. Our approach sets a new state-of-the-art by achieving a relative gain of 7.9 %, compared to the previous best approach.Comment: Submitted to CAIP 201

    Quantum Electronics

    Get PDF
    Contains research objectives and summary of research for eight research projects split into three sections and a report on one research project.U. S. Air Force - Office of Scientific Research (Contract F44620-71-C-0051)Joint Services Electronics Program (Contract DAAB07-75-C-1346

    Epidermal growth factor receptor downregulation by small heterodimeric binding proteins

    Get PDF
    No single engineered protein has been shown previously to robustly downregulate epidermal growth factor receptor (EGFR), a validated cancer target. A panel of fibronectin-based domains was engineered to bind with picomolar to nanomolar affinity to multiple epitopes of EGFR. Monovalent and homo- and hetero-bivalent dimers of these domains were tested for EGFR downregulation. Selected orientations of non-competitive heterodimers decrease EGFR levels by up to 80% in multiple cell types, without activating receptor signaling. These heterodimers inhibit autophosphorylation, proliferation and migration, and are synergistic with the monoclonal antibody cetuximab in these activities. These small (25 kDa) heterodimers represent a novel modality for modulating surface receptor levels.National Institutes of Health (U.S.) (NIH grant CA96504)National Institutes of Health (U.S.) (NIH grant CA118705)National Science Foundation (U.S.) (Graduate Research Fellowship Program

    The pro-active resource management departments of constituent entities of the tourism cluster

    Get PDF
    The proposed approach to the pro-active resource management departments of constituent entities of the tourism cluster, in particular of housekeeping service of the hotel. The developed methodology of the pro-active resource management of housekeeping service of the hotel was described

    The Quark-Hadron Phase Transition, QCD Lattice Calculations and Inhomogeneous Big-Bang Nucleosynthesis

    Full text link
    We review recent lattice QCD results for the surface tension at the finite temperature quark-hadron phase transition and discuss their implications on the possible scale of inhomogeneities. In the quenched approximation the average distance between nucleating centers is smaller than the diffusion length of a protron, so that inhomogeneities are washed out by the time nucleosynthesis sets in. Consequently the baryon density fluctuations formed by a QCD phase transition in the early universe cannot significantly affect standard big-bang nucleosynthesis calculations and certainly cannot allow baryons to close the universe. At present lattice results are inconclusive when dynamical fermions are included.Comment: 8 pages, LaTe

    Metastable lifetimes in a kinetic Ising model: Dependence on field and system size

    Full text link
    The lifetimes of metastable states in kinetic Ising ferromagnets are studied by droplet theory and Monte Carlo simulation, in order to determine their dependences on applied field and system size. For a wide range of fields, the dominant field dependence is universal for local dynamics and has the form of an exponential in the inverse field, modified by universal and nonuniversal power-law prefactors. Quantitative droplet-theory predictions are numerically verified, and small deviations are shown to depend nonuniversally on the details of the dynamics. We identify four distinct field intervals in which the field dependence and statistical properties of the lifetimes are different. The field marking the crossover between the weak-field regime, in which the decay is dominated by a single droplet, and the intermediate-field regime, in which it is dominated by a finite droplet density, vanishes logarithmically with system size. As a consequence the slow decay characteristic of the former regime may be observable in systems that are macroscopic as far as their equilibrium properties are concerned.Comment: 18 pages single spaced. RevTex Version 3. FSU-SCRI-94-1

    Quantum Electronics

    Get PDF
    Contains reports on eight research projects divided into three sections.National Science Foundation (Grant PHY79-09739)Joint Services Electronics Program (Contract DAAG29-78-C-0020)U.S. Air Force Geophysics Laboratory (AFSC) (Contract F19628-79-C-0082)National Science Foundation (Grant ENG79-09980

    Quantum Electronics

    Get PDF
    Contains reports on three research projects.National Science Foundation (Grant PHY77-07156)Joint Services Electronics Program (Contract DAABO7-76-C-1400)U. S. Air Force - Office of Scientific Research (Grant AFOSR-76-3042)U. S. Air Force - Office of Scientific Research (Contract F-44620-76-C-0079)M.I.T. Sloan Fund for Basic Researc

    Quantum Electronics

    Get PDF
    Contains report on ten research projects split into three sections.Joint Services Electronics Program (Contract DAAG29-78-C-0020)National Science Foundation (Grant PHY77-07156)U. S. Air Force-Office of Scientific Research (Grant AFOSR-3042)National Science Foundation (Grant ENG77-24981

    Quantum Electronics

    Get PDF
    Contains research objectives and summary of research on eight research projects split into four sections.Joint Services Electronics Program (Contract DAAB07-76-C-1400)U. S. Air Force - Office of Scientific Research (Grant AFOSR-76-3042)U. S. Air Force - Office of Scientific Research (Contract F44620-76-C-0079
    corecore