726 research outputs found
Deep Projective 3D Semantic Segmentation
Semantic segmentation of 3D point clouds is a challenging problem with
numerous real-world applications. While deep learning has revolutionized the
field of image semantic segmentation, its impact on point cloud data has been
limited so far. Recent attempts, based on 3D deep learning approaches
(3D-CNNs), have achieved below-expected results. Such methods require
voxelizations of the underlying point cloud data, leading to decreased spatial
resolution and increased memory consumption. Additionally, 3D-CNNs greatly
suffer from the limited availability of annotated datasets.
In this paper, we propose an alternative framework that avoids the
limitations of 3D-CNNs. Instead of directly solving the problem in 3D, we first
project the point cloud onto a set of synthetic 2D-images. These images are
then used as input to a 2D-CNN, designed for semantic segmentation. Finally,
the obtained prediction scores are re-projected to the point cloud to obtain
the segmentation results. We further investigate the impact of multiple
modalities, such as color, depth and surface normals, in a multi-stream network
architecture. Experiments are performed on the recent Semantic3D dataset. Our
approach sets a new state-of-the-art by achieving a relative gain of 7.9 %,
compared to the previous best approach.Comment: Submitted to CAIP 201
Quantum Electronics
Contains research objectives and summary of research for eight research projects split into three sections and a report on one research project.U. S. Air Force - Office of Scientific Research (Contract F44620-71-C-0051)Joint Services Electronics Program (Contract DAAB07-75-C-1346
Epidermal growth factor receptor downregulation by small heterodimeric binding proteins
No single engineered protein has been shown previously to robustly downregulate epidermal growth factor receptor (EGFR), a validated cancer target. A panel of fibronectin-based domains was engineered to bind with picomolar to nanomolar affinity to multiple epitopes of EGFR. Monovalent and homo- and hetero-bivalent dimers of these domains were tested for EGFR downregulation. Selected orientations of non-competitive heterodimers decrease EGFR levels by up to 80% in multiple cell types, without activating receptor signaling. These heterodimers inhibit autophosphorylation, proliferation and migration, and are synergistic with the monoclonal antibody cetuximab in these activities. These small (25 kDa) heterodimers represent a novel modality for modulating surface receptor levels.National Institutes of Health (U.S.) (NIH grant CA96504)National Institutes of Health (U.S.) (NIH grant CA118705)National Science Foundation (U.S.) (Graduate Research Fellowship Program
The pro-active resource management departments of constituent entities of the tourism cluster
The proposed approach to the pro-active resource management departments of constituent entities of the tourism cluster, in particular of housekeeping service of the hotel. The developed methodology of the pro-active resource management of housekeeping service of the hotel was described
The Quark-Hadron Phase Transition, QCD Lattice Calculations and Inhomogeneous Big-Bang Nucleosynthesis
We review recent lattice QCD results for the surface tension at the finite
temperature quark-hadron phase transition and discuss their implications on the
possible scale of inhomogeneities. In the quenched approximation the average
distance between nucleating centers is smaller than the diffusion length of a
protron, so that inhomogeneities are washed out by the time nucleosynthesis
sets in. Consequently the baryon density fluctuations formed by a QCD phase
transition in the early universe cannot significantly affect standard big-bang
nucleosynthesis calculations and certainly cannot allow baryons to close the
universe. At present lattice results are inconclusive when dynamical fermions
are included.Comment: 8 pages, LaTe
Metastable lifetimes in a kinetic Ising model: Dependence on field and system size
The lifetimes of metastable states in kinetic Ising ferromagnets are studied
by droplet theory and Monte Carlo simulation, in order to determine their
dependences on applied field and system size. For a wide range of fields, the
dominant field dependence is universal for local dynamics and has the form of
an exponential in the inverse field, modified by universal and nonuniversal
power-law prefactors. Quantitative droplet-theory predictions are numerically
verified, and small deviations are shown to depend nonuniversally on the
details of the dynamics. We identify four distinct field intervals in which the
field dependence and statistical properties of the lifetimes are different. The
field marking the crossover between the weak-field regime, in which the decay
is dominated by a single droplet, and the intermediate-field regime, in which
it is dominated by a finite droplet density, vanishes logarithmically with
system size. As a consequence the slow decay characteristic of the former
regime may be observable in systems that are macroscopic as far as their
equilibrium properties are concerned.Comment: 18 pages single spaced. RevTex Version 3. FSU-SCRI-94-1
Quantum Electronics
Contains reports on eight research projects divided into three sections.National Science Foundation (Grant PHY79-09739)Joint Services Electronics Program (Contract DAAG29-78-C-0020)U.S. Air Force Geophysics Laboratory (AFSC) (Contract F19628-79-C-0082)National Science Foundation (Grant ENG79-09980
Quantum Electronics
Contains reports on three research projects.National Science Foundation (Grant PHY77-07156)Joint Services Electronics Program (Contract DAABO7-76-C-1400)U. S. Air Force - Office of Scientific Research (Grant AFOSR-76-3042)U. S. Air Force - Office of Scientific Research (Contract F-44620-76-C-0079)M.I.T. Sloan Fund for Basic Researc
Quantum Electronics
Contains report on ten research projects split into three sections.Joint Services Electronics Program (Contract DAAG29-78-C-0020)National Science Foundation (Grant PHY77-07156)U. S. Air Force-Office of Scientific Research (Grant AFOSR-3042)National Science Foundation (Grant ENG77-24981
Quantum Electronics
Contains research objectives and summary of research on eight research projects split into four sections.Joint Services Electronics Program (Contract DAAB07-76-C-1400)U. S. Air Force - Office of Scientific Research (Grant AFOSR-76-3042)U. S. Air Force - Office of Scientific Research (Contract F44620-76-C-0079
- …
