24,928 research outputs found

    Introduction

    Get PDF
    This chapter will motivate why it is useful to consider the topic of derivations and filtering in more detail. We will argue against the popular belief that the minimalist program and optimality theory are incompatible theories in that the former places the explanatory burden on the generative device (the computational system) whereas the latter places it on the fi ltering device (the OT evaluator). Although this belief may be correct in as far as it describes existing tendencies, we will argue that minimalist and optimality theoretic approaches normally adopt more or less the same global architecture of grammar: both assume that a generator defines a set S of potentially well-formed expressions that can be generated on the basis of a given input and that there is an evaluator that selects the expressions from S that are actually grammatical in a given language L. For this reason, we believe that it has a high priority to investigate the role of the two components in more detail in the hope that this will provide a better understanding of the differences and similarities between the two approaches. We will conclude this introduction with a brief review of the studies collected in this book.

    Universal measurement of quantum correlations of radiation

    Full text link
    A measurement technique is proposed which, in principle, allows one to observe the general space-time correlation properties of a quantized radiation field. Our method, called balanced homodyne correlation measurement, unifies the advantages of balanced homodyne detection with those of homodyne correlation measurements.Comment: 4 pages, 4 figures, small misprints were corrected, accepted to Phys. Rev. Let

    Origin of non-exponential relaxation in a crystalline ionic conductor: a multi-dimensional 109Ag NMR study

    Full text link
    The origin of the non-exponential relaxation of silver ions in the crystalline ion conductor Ag7P3S11 is analyzed by comparing appropriate two-time and three-time 109Ag NMR correlation functions. The non-exponentiality is due to a rate distribution, i.e., dynamic heterogeneities, rather than to an intrinsic non-exponentiality. Thus, the data give no evidence for the relevance of correlated back-and-forth jumps on the timescale of the silver relaxation.Comment: 4 pages, 3 figure

    Locating the source of projectile fluid droplets

    Full text link
    The ill-posed projectile problem of finding the source height from spattered droplets of viscous fluid is a longstanding obstacle to accident reconstruction and crime scene analysis. It is widely known how to infer the impact angle of droplets on a surface from the elongation of their impact profiles. However, the lack of velocity information makes finding the height of the origin from the impact position and angle of individual drops not possible. From aggregate statistics of the spatter and basic equations of projectile motion, we introduce a reciprocal correlation plot that is effective when the polar launch angle is concentrated in a narrow range. The vertical coordinate depends on the orientation of the spattered surface, and equals the tangent of the impact angle for a level surface. When the horizontal plot coordinate is twice the reciprocal of the impact distance, we can infer the source height as the slope of the data points in the reciprocal correlation plot. If the distribution of launch angles is not narrow, failure of the method is evident in the lack of linear correlation. We perform a number of experimental trials, as well as numerical calculations and show that the height estimate is insensitive to aerodynamic drag. Besides its possible relevance for crime investigation, reciprocal-plot analysis of spatter may find application to volcanism and other topics and is most immediately applicable for undergraduate science and engineering students in the context of crime-scene analysis.Comment: To appear in the American Journal of Physics (ms 23338). Improved readability and organization in this versio

    Caging dynamics in a granular fluid

    Full text link
    We report an experimental investigation of the caging motion in a uniformly heated granular fluid, for a wide range of filling fractions, ϕ\phi. At low ϕ\phi the classic diffusive behavior of a fluid is observed. However, as ϕ\phi is increased, temporary cages develop and particles become increasingly trapped by their neighbors. We statistically analyze particle trajectories and observe a number of robust features typically associated with dense molecular liquids and colloids. Even though our monodisperse and quasi-2D system is known to not exhibit a glass transition, we still observe many of the precursors usually associated with glassy dynamics. We speculate that this is due to a process of structural arrest provided, in our case, by the presence of crystallization.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Electron Glass Dynamics

    Full text link
    Examples of glasses are abundant, yet it remains one of the phases of matter whose understanding is very elusive. In recent years, remarkable experiments have been performed on the dynamical aspects of glasses. Electron glasses offer a particularly good example of the 'trademarks' of glassy behavior, such as aging and slow relaxations. In this work we review the experimental literature on electron glasses, as well as the local mean-field theoretical framework put forward in recent years to understand some of these results. We also present novel theoretical results explaining the periodic aging experiment.Comment: Invited review to appear in Annual Review of Condensed Matter Physic

    Characterization of the Dynamics of Glass-forming Liquids from the Properties of the Potential Energy Landscape

    Get PDF
    We develop a framework for understanding the difference between strong and fragile behavior in the dynamics of glass-forming liquids from the properties of the potential energy landscape. Our approach is based on a master equation description of the activated jump dynamics among the local minima of the potential energy (the so-called inherent structures) that characterize the potential energy landscape of the system. We study the dynamics of a small atomic cluster using this description as well as molecular dynamics simulations and demonstrate the usefulness of our approach for this system. Many of the remarkable features of the complex dynamics of glassy systems emerge from the activated dynamics in the potential energy landscape of the atomic cluster. The dynamics of the system exhibits typical characteristics of a strong supercooled liquid when the system is allowed to explore the full configuration space. This behavior arises because the dynamics is dominated by a few lowest-lying minima of the potential energy and the potential energy barriers between these minima. When the system is constrained to explore only a limited region of the potential energy landscape that excludes the basins of attraction of a few lowest-lying minima, the dynamics is found to exhibit the characteristics of a fragile liquid.Comment: 13 pages, 6 figure

    Illumination in symbiotic binary stars: Non-LTE photoionization models. II. Wind case

    Get PDF
    We describe a non-LTE photoionization code to calculate the wind structure and emergent spectrum of a red giant wind illuminated by the hot component of a symbiotic binary system. We consider spherically symmetric winds with several different velocity and temperature laws and derive predicted line fluxes as a function of the red giant mass loss rate, \mdot. Our models generally match observations of the symbiotic stars EG And and AG Peg for \mdot about 10^{-8} \msunyr to 10^{-7} \msunyr. The optically thick cross- section of the red giant wind as viewed from the hot component is a crucial parameter in these models. Winds with cross-sections of 2--3 red giant radii reproduce the observed fluxes, because the wind density is then high, about 10^9 cm^{-3}. Our models favor winds with acceleration regions that either lie far from the red giant photosphere or extend for 2--3 red giant radii.Comment: 51 pages, LaTeX including three tables, requires 15 Encapsulated Postscript figures, to appear in Ap
    corecore