941 research outputs found

    Tension, rigidity and preferential curvature of interfaces between coexisting polymer solutions

    Full text link
    The properties of the interface in a phase-separated solution of polymers with different degrees of polymerization and Kuhn segment lengths are calculated. The starting point is the planar interface, the profile of which is calculated in the so-called 'blob model', which incorporates the solvent in an implicit way. The next step is the study of a metastable droplet phase formed by imposing a chemical potential different from that at coexistence. The pressure difference across the curved interface, which corresponds to this higher chemical potential, is used to calculate the curvature properties of the droplet. Interfacial tensions, Tolman lengths and rigidities are calculated and used for predictions for a realistic experimental case. The results suggest that interfaces between phase-separated solutions of polymers exhibit, in general, a preferential curvature, which stabilizes droplets of low molecular mass polymer in a high molecular mass macroscopic phase.Comment: 21 pages; 8 figures; accepted for publication in Macromolecule

    Time and Space Bounds for Reversible Simulation

    Get PDF
    We prove a general upper bound on the tradeoff between time and space that suffices for the reversible simulation of irreversible computation. Previously, only simulations using exponential time or quadratic space were known. The tradeoff shows for the first time that we can simultaneously achieve subexponential time and subquadratic space. The boundary values are the exponential time with hardly any extra space required by the Lange-McKenzie-Tapp method and the (log3\log 3)th power time with square space required by the Bennett method. We also give the first general lower bound on the extra storage space required by general reversible simulation. This lower bound is optimal in that it is achieved by some reversible simulations.Comment: 11 pages LaTeX, Proc ICALP 2001, Lecture Notes in Computer Science, Vol xxx Springer-Verlag, Berlin, 200

    Point defects, ferromagnetism and transport in calcium hexaboride

    Full text link
    The formation energy and local magnetic moment of a series of point defects in CaB6_6 are computed using a supercell approach within the generalized gradient approximation to density functional theory. Based on these results, speculations are made as to the influence of these defects on electrical transport. It is found that the substitution of Ca by La does not lead to the formation of a local moment, while a neutral B6_6 vacancy carries a moment of 2.4 Bohr magnetons, mostly distributed over the six nearest-neighbour B atoms. A plausible mechanism for the ferromagnetic ordering of these moments is suggested. Since the same broken B-B bonds appear on the preferred (100) cleavage planes of the CaB6_6 structure, it is argued that internal surfaces in polycrystals as well as external surfaces in general will make a large contribution to the observed magnetization.Comment: Calculated defect formation energies had to be corrected, due to the use of a wrong reference energy for the perfect crystal in the original pape

    Frequency analysis of Dutch vowels from 50 male speakers

    Full text link

    Charge dynamics and "ferromagnetism" of A1-xLaxB6 (A=Ca and Sr)

    Full text link
    Ferromagnetism has been reported recently in La-doped alkaline-earth hexaborides, A1-xLaxB6 (A=Ca, Sr, and Ba). We have performed the reflectivity, Hall resistivity, and magnetization measurements of A1-xLaxB6. The results indicate that A1-xLaxB6 can be regarded as a simple doped semimetal, with no signature of an excitonic state as suggested by several theories. It is also found that the surface of as-grown samples (10 micrometer in thickness) has a different electronic structure from a bulk one, and a fairly large number of paramagnetic moments are confined in this region. After eliminating these paramagnetic moments at the surface, we could not find any evidence of an intrinsic ferromagnetic moment in our samples, implying the possibility that the ferromagnetism of A1-xLaxB6 reported so far is neither intrinsic.Comment: 7 pages, 8 figure

    Theory of Ferromagnetism in Ca1-xLaxB6

    Full text link
    Novel ferromagnetism in Ca1x_{1-x}Lax_{x}B6_6 is studied in terms of the Ginzburg-Landau theory for excitonic order parameters, taking into account symmetry of the wavefunctions. We found that the minima of the free energy break both inversion and time-reversal symmetries, while the product of these two remains preserved. This explains various novelties of the ferromagnetism and predicts a number of magnetic properties, including the magnetoelectric effect, which can be tested experimentally.Comment: 5 pages, accepted for publication in Phys.Rev.Let

    CaB_6: a new semiconducting material for spin electronics

    Full text link
    Ferromagnetism was recently observed at unexpectedly high temperatures in La-doped CaB_6. The starting point of all theoretical proposals to explain this observation is a semimetallic electronic structure calculated for CaB_6 within the local density approximation. Here we report the results of parameter-free quasiparticle calculations of the single-particle excitation spectrum which show that CaB_6 is not a semimetal but a semiconductor with a band gap of 0.8 eV. Magnetism in La_xCa_{1-x}B_6 occurs just on the metallic side of a Mott transition in the La-induced impurity band.Comment: 4 pages, 1 postscript figur

    Action research and democracy

    Get PDF
    This contribution explores the relationship between research and learning democracy. Action research is seen as being compatible with the orientation of educational and social work research towards social justice and democracy. Nevertheless, the history of action research is characterized by a tension between democracy and social engineering. In the social-engineering approach, action research is conceptualized as a process of innovation aimed at a specific Bildungsideal. In a democratic approach action research is seen as research based on cooperation between research and practice. However, the notion of democratic action research as opposed to social engineering action research needs to be theorized. So called democratic action research involving the implementation by the researcher of democracy as a model and as a preset goal, reduces cooperation and participation into instruments to reach this goal, and becomes a type of social engineering in itself. We argue that the relationship between action research and democracy is in the acknowledgment of the political dimension of participation: ‘a democratic relationship in which both sides exercise power and shared control over decision-making as well as interpretation’. This implies an open research design and methodology able to understand democracy as a learning process and an ongoing experiment

    Glycemic Control for Colorectal Cancer Survivors Compared to Those without Cancer in the Dutch Primary Care for Type 2 Diabetes:A Prospective Cohort Study

    Get PDF
    SIMPLE SUMMARY: A growing number of colorectal cancer survivors live with type 2 diabetes, as a result of improved cancer diagnosis and treatment. These patients might have worse glycemic control after their cancer diagnosis, which may increase the risk of cardiovascular diseases. This prospective cohort study evaluated the quality of glycemic control for colorectal cancer survivors, as compared to those without cancer in Dutch primary care for diabetes. During a 10-year follow-up for 57,330 patients, there were 705 patients diagnosed with colorectal cancer. No clinically relevant difference on the probability of reaching the target HbA1c was observed between colorectal cancer survivors and patients with no history of cancer. These results showed a robust diabetes care system, implying that the glycemic control for colorectal cancer survivors can be delegated to the primary care professionals. ABSTRACT: Cancer survivors with diabetes tend to have worse glycemic control after their cancer diagnosis, which may increase the risk of cardiovascular diseases. We aimed to investigate whether glycemic control differs between colorectal cancer (CRC) survivors and those without cancer, among patients with type 2 diabetes being treated in the Dutch primary care. The Zwolle Outpatient Diabetes project Integrating Available Care database was linked with the Dutch Cancer Registry (n = 71,648, 1998–2014). The cases were those with stage 0–III CRC, and the controls were those without cancer history. The primary and secondary outcomes were the probability of reaching the glycated hemoglobin (HbA1c) target and the mean of HbA1c during follow-up, respectively. Mixed linear modeling was applied, where the status of CRC was a time-varying variable. Among the 57,330 patients included, 705 developed CRC during follow-up. The mean probability of reaching the HbA1c target during follow-up was 73% versus 74% (p = 0.157) for CRC survivors versus those without cancer, respectively. The mean HbA1c was 51.1 versus 50.8 mmol/mol (p = 0.045) among CRC survivors versus those without cancer, respectively. We observed a clinically comparable glycemic control among the CRC survivors without cancer, indicating that glycemic control for CRC survivors can be delegated to primary care professionals

    Theory of High \tc Ferromagnetism in SrB6SrB_6 family: A case of Doped Spin-1 Mott insulator in a Valence Bond Solid Phase

    Full text link
    Doped divalent hexaborides such as Sr1xLaxB6Sr_{1-x}La_xB_6 exhibit high \tc ferromagnetism. We isolate a degenerate pair of 2p2p-orbitals of boron with two valence electrons, invoke electron correlation and Hund coupling, to suggest that the undoped state is better viewed as a spin-1 Mott insulator; it is predicted to be a type of 3d Haldane gap phase with a spin gap 0.1eV\sim 0.1 eV, much smaller than the charge gap of >1.0eV > 1.0 eV seen in ARPES. The experimentally seen high \tc `ferromagnetism' is argued to be a complex magnetic order in disguise - either a canted 6-sublattice AFM (1200\approx 120^0) order or its quantum melted version, a chiral spin liquid state, arising from a type of double exchange mechanism.Comment: 4 pages, 2 figures; minor corrections, references adde
    corecore