211 research outputs found

    Body image in patients with somatoform disorder

    Get PDF
    BACKGROUND: Although body-related problems are common in patients with somatoform disorder, research focusing on how patients with somatoform disorder perceive and evaluate their body is scarce. The present study compared differences in body image between patients with somatoform disorder and respondents from a general population sample. It also examined differences within the somatoform disorder group between men and women and between the diagnostic subgroups conversion disorder, pain disorder and undifferentiated somatoform disorder. METHODS: Data were obtained from 657 patients (67.5% female) with somatoform disorder (DSM-IV-TR 300.7, 300.11, 300.81, 300.82) and 761 participants (58.6% female) from the general population. The Dresden Body Image Questionnaire (DBIQ) was used to assess body image in five domains: body acceptance, vitality, physical contact, sexual fulfilment, and self-aggrandizement. Confirmatory factor analysis and analyses of variance were performed. Since differences in age and sex were found between the somatoform disorder sample and the comparison sample, analyses were done with two samples of 560 patients with somatoform disorder and 351 individuals from the comparison sample matched on proportion of men and women and age. RESULTS: Patients scored significantly lower than the comparison sample on all DBIQ domains. Men scored higher than women. Patients with conversion disorder scored significantly higher on vitality and body acceptance than patients with undifferentiated somatoform disorder and pain disorder. CONCLUSIONS: The mostly large differences in body image between patients with somatoform disorder and the comparison sample as well as differences between diagnostic subgroups underline that body image is an important feature in patients with somatoform disorder. The results indicate the usefulness of assessing body image and treating negative body image in patients with somatoform or somatic symptom disorder

    Genetic and phenotypic characterization of NKX6‐2‐related spastic ataxia and hypomyelination

    Get PDF
    Background and purpose Hypomyelinating leukodystrophies are a heterogeneous group of genetic disorders with a wide spectrum of phenotypes and a high rate of genetically unsolved cases. Bi‐allelic mutations in NKX6‐2 were recently linked to spastic ataxia 8 with hypomyelinating leukodystrophy. Methods Using a combination of homozygosity mapping, exome sequencing, and detailed clinical and neuroimaging assessment a series of new NKX6‐2 mutations in a multicentre setting is described. Then, all reported NKX6‐2 mutations and those identified in this study were combined and an in‐depth analysis of NKX6‐2‐related disease spectrum was provided. Results Eleven new cases from eight families of different ethnic backgrounds carrying compound heterozygous and homozygous pathogenic variants in NKX6‐2 were identified, evidencing a high NKX6‐2 mutation burden in the hypomyelinating leukodystrophy disease spectrum. Our data reveal a phenotype spectrum with neonatal onset, global psychomotor delay and worse prognosis at the severe end and a childhood onset with mainly motor phenotype at the milder end. The phenotypic and neuroimaging expression in NKX6‐2 is described and it is shown that phenotypes with epilepsy in the absence of overt hypomyelination and diffuse hypomyelination without seizures can occur. Conclusions NKX6‐2 mutations should be considered in patients with autosomal recessive, very early onset of nystagmus, cerebellar ataxia with hypotonia that rapidly progresses to spasticity, particularly when associated with neuroimaging signs of hypomyelination. Therefore, it is recommended that NXK6‐2 should be included in hypomyelinating leukodystrophy and spastic ataxia diagnostic panels

    Early Left-Hemispheric Dysfunction of Face Processing in Congenital Prosopagnosia: An MEG Study

    Get PDF
    Electrophysiological research has demonstrated the relevance to face processing of a negative deflection peaking around 170 ms, labelled accordingly as N170 in the electroencephalogram (EEG) and M170 in magnetoencephalography (MEG). The M170 was shown to be sensitive to the inversion of faces and to familiarity-two factors that are assumed to be crucial for congenital prosopagnosia. In order to locate the cognitive dysfunction and its neural correlates, we investigated the time course of neural activity in response to these manipulations.Seven individuals with congenital prosopagnosia and seven matched controls participated in the experiment. To explore brain activity with high accuracy in time, we recorded evoked magnetic fields (275 channel whole head MEG) while participants were looking at faces differing in familiarity (famous vs. unknown) and orientation (upright vs. inverted). The underlying neural sources were estimated by means of the least square minimum-norm-estimation (L2-MNE) approach.The behavioural data corroborate earlier findings on impaired configural processing in congenital prosopagnosia. For the M170, the overall results replicated earlier findings, with larger occipito-temporal brain responses to inverted than upright faces, and more right- than left-hemispheric activity. Compared to controls, participants with congenital prosopagnosia displayed a general decrease in brain activity, primarily over left occipitotemporal areas. This attenuation did not interact with familiarity or orientation.The study substantiates the finding of an early involvement of the left hemisphere in symptoms of prosopagnosia. This might be related to an efficient and overused featural processing strategy which serves as a compensation of impaired configural processing

    Pathogenic <i>SPTBN1</i> variants cause an autosomal dominant neurodevelopmental syndrome

    Get PDF
    SPTBN1 encodes βII-spectrin, the ubiquitously expressed β-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal βII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of βII-spectrin in the central nervous system
    corecore