11,345 research outputs found

    Two-component {CH} system: Inverse Scattering, Peakons and Geometry

    Full text link
    An inverse scattering transform method corresponding to a Riemann-Hilbert problem is formulated for CH2, the two-component generalization of the Camassa-Holm (CH) equation. As an illustration of the method, the multi - soliton solutions corresponding to the reflectionless potentials are constructed in terms of the scattering data for CH2.Comment: 22 pages, 3 figures, draft, please send comment

    The free rigid body dynamics: generalized versus classic

    Full text link
    In this paper we analyze the normal forms of a general quadratic Hamiltonian system defined on the dual of the Lie algebra o(K)\mathfrak{o}(K) of real KK - skew - symmetric matrices, where KK is an arbitrary 3×33\times 3 real symmetric matrix. A consequence of the main results is that any first-order autonomous three-dimensional differential equation possessing two independent quadratic constants of motion which admits a positive/negative definite linear combination, is affinely equivalent to the classical "relaxed" free rigid body dynamics with linear controls.Comment: 12 page

    Continuous and discrete Clebsch variational principles

    Full text link
    The Clebsch method provides a unifying approach for deriving variational principles for continuous and discrete dynamical systems where elements of a vector space are used to control dynamics on the cotangent bundle of a Lie group \emph{via} a velocity map. This paper proves a reduction theorem which states that the canonical variables on the Lie group can be eliminated, if and only if the velocity map is a Lie algebra action, thereby producing the Euler-Poincar\'e (EP) equation for the vector space variables. In this case, the map from the canonical variables on the Lie group to the vector space is the standard momentum map defined using the diamond operator. We apply the Clebsch method in examples of the rotating rigid body and the incompressible Euler equations. Along the way, we explain how singular solutions of the EP equation for the diffeomorphism group (EPDiff) arise as momentum maps in the Clebsch approach. In the case of finite dimensional Lie groups, the Clebsch variational principle is discretised to produce a variational integrator for the dynamical system. We obtain a discrete map from which the variables on the cotangent bundle of a Lie group may be eliminated to produce a discrete EP equation for elements of the vector space. We give an integrator for the rotating rigid body as an example. We also briefly discuss how to discretise infinite-dimensional Clebsch systems, so as to produce conservative numerical methods for fluid dynamics

    Complete integrability versus symmetry

    Full text link
    The purpose of this article is to show that on an open and dense set, complete integrability implies the existence of symmetry

    Tilting mutation of weakly symmetric algebras and stable equivalence

    Full text link
    We consider tilting mutations of a weakly symmetric algebra at a subset of simple modules, as recently introduced by T. Aihara. These mutations are defined as the endomorphism rings of certain tilting complexes of length 1. Starting from a weakly symmetric algebra A, presented by a quiver with relations, we give a detailed description of the quiver and relations of the algebra obtained by mutating at a single loopless vertex of the quiver of A. In this form the mutation procedure appears similar to, although significantly more complicated than, the mutation procedure of Derksen, Weyman and Zelevinsky for quivers with potentials. By definition, weakly symmetric algebras connected by a sequence of tilting mutations are derived equivalent, and hence stably equivalent. The second aim of this article is to study these stable equivalences via a result of Okuyama describing the images of the simple modules. As an application we answer a question of Asashiba on the derived Picard groups of a class of self-injective algebras of finite representation type. We conclude by introducing a mutation procedure for maximal systems of orthogonal bricks in a triangulated category, which is motivated by the effect that a tilting mutation has on the set of simple modules in the stable category.Comment: Description and proof of mutated algebra made more rigorous (Prop. 3.1 and 4.2). Okuyama's Lemma incorporated: Theorem 4.1 is now Corollary 5.1, and proof is omitted. To appear in Algebras and Representation Theor

    Ultraviolet light curves of U Geminorum and VW Hydri

    Get PDF
    Ultraviolet light curves were obtained for the quiescent dwarf novae U Gem and VW Hyi. The amplitude of the hump associated with the accretion hot spot is much smaller in the UV than in the visible. This implies that the bright spot temperature is roughly 12000 K if it is optically thick. The flux distribution of U Gem in quiescence cannot be fitted by model spectra of steady state, viscous accretion disks. The absolute luminosity, the flux distribution, and the far UV spectrum suggest that the primary star is visible in the far UV. The optical UV flux distribution of VW Hyi can be matched roughly by the model accretion disks

    GEANT4 Studies of Magnets Activation in the HEBT Line for the European Spallation Source

    Get PDF
    The High Energy Beam Transport (HEBT) line for the European Spallation Source is designed to transport the beam from the underground linac to the target at the surface level while keeping the beam losses small and providing the requested beam footprint and profile on the target. This paper presents activation studies of the magnets in the HEBT line due to backscattered neutrons from the target and beam interactions inside the collimators producing unstable isotopes

    Laboratoriumstandaardisasie en kwaliteitskontrole in antistolterapie

    Get PDF
    The original publication is available at http://www.samj.org.za[No abstract available]Publishers' versio

    Onsager-Manning-Oosawa condensation phenomenon and the effect of salt

    Full text link
    Making use of results pertaining to Painleve III type equations, we revisit the celebrated Onsager-Manning-Oosawa condensation phenomenon for charged stiff linear polymers, in the mean-field approximation with salt. We obtain analytically the associated critical line charge density, and show that it is severely affected by finite salt effects, whereas previous results focused on the no salt limit. In addition, we obtain explicit expressions for the condensate thickness and the electric potential. The case of asymmetric electrolytes is also briefly addressed.Comment: to appear in Phys. Rev. Let
    corecore